

Version: 1.1

Date: 2017.06.01

ADEQUATe

ODALIC Documentation

TABLE OF CONTENTS

1 User Documentation...5

1.1 Introduction to Odalic...5
1.1.1 Odalic Semantic Table Interpretation...6
1.1.2 Odalic UI...7
1.1.3 Odalic UnifiedViews Plugin..7

1.2 User interface..7
1.2.1 Home page...7
1.2.2 Signing up, logging in and account management...8
1.2.3 New task...10
1.2.4 List of tasks..13
1.2.5 Task import..15
1.2.6 List of files..16
1.2.7 Task result..17
1.2.8 Knowledge base import...24
1.2.9 List of knowledge bases...25
1.2.10 New knowledge base..26

1.3 REST API specification...31
1.3.1 Content wrapping and stamps..31
1.3.2 HTTP error codes and headers...32
1.3.3 Signing up, authentication and authorization...33
1.3.4 Users...33
1.3.5 Files...35
1.3.6 Tasks..37
1.3.7 Bases...54
1.3.8 Advanced base types..55
1.3.9 Predicates and classes groups..56
1.3.10 Entities..57
1.3.11 Proposing entities...58

1.4 UnifiedViews DPU..60
1.4.1 Introduction...60
1.4.2 Setting up a template...60
1.4.3 Using the instances...62

 1

1.5 Glossary..68
1.5.1 W3C Linked Data Glossary...68
1.5.2 Project glossary...68

2 Installation guides...75

2.1 Server installation...75
2.1.1 Prerequisites..75
2.1.2 Deployment...75
2.1.3 Building from source files..76
2.1.4 Security...76
2.1.5 Confirmation e-mails set up..77

2.2 Web client installation..77
2.2.1 Setting up a web server for the web client..77
2.2.2 Configuring the sign-up and password-reset confirmation address on the server.......77
2.2.3 Configuring address of the server in the client...78
2.2.4 Installing LodLive application component...79
2.2.5 Supported browsers...79

2.3 Plugin installation...79
2.3.1 Deployment...79
2.3.2 Building from source files..80

2.4 Virtuoso installation...80
2.4.1 Installation..80
2.4.2 Datasets import...81

2.5 Reducing the space consumption of DBpedia...81

2.6 Docker image...82
2.6.1 Docker setup..82
2.6.2 Running Odalic..82
2.6.3 Accessing the virtual machine...83
2.6.4 Starting and stopping the Odalic container..83
2.6.5 Changing ports..84
2.6.6 Updating Odalic...84
2.6.7 Advanced Docker configuration..85

3 Developer Documentation..86

 2

3.1 Architecture...87
3.1.1 Odalic UI...87
3.1.2 Odalic Semantic Table Interpreation..87
3.1.3 Odalic DPU...88

3.2 Server..88
3.2.1 Modules..89
3.2.2 Core algorithm description..91
3.2.3 REST API implementation...98
3.2.4 Authentication and authorization...99
3.2.5 Input files management and parsing...101
3.2.6 Tasks executions...101
3.2.7 User feedback..105
3.2.8 Result exports..108
3.2.9 Data cube...114
3.2.10 Configurations export and import..120
3.2.11 Persisting server state..123
3.2.12 Configuration...125
3.2.13 RDF manipulation...136

3.3 UI..137
3.3.1 Introduction...137
3.3.2 Architecture...137
3.3.3 Folder structure...137
3.3.4 External libraries...138
3.3.5 Goals...138
3.3.6 Application loading...139
3.3.7 Screens...140
3.3.8 Services...142
3.3.9 Authentication and authorization...143
3.3.10 Directives..143
3.3.11 File handling...145
3.3.12 Task handling...145
3.3.13 Taskresult screen...146
3.3.14 Knowledge base configuration handling...149

3.4 UnifiedViews DPU implementation..150

3.5 Possible extensions and improvements...150
3.5.1 Algorithm..150
3.5.2 UI Improvements..154

 3

3.6 Project history..154

4 Installation disc contents...158

5 Logos..159

 4

1 USER DOCUMENTATION

 Introduction to Odalic

 User interface

 REST API specification

 UnifiedViews DPU

 Glossary

2 Introduction to Odalic

Many governments or governmental organizations throughout the world allow the public to
access data they produce or collect (e.g. http://data.gv.at/ or http://data.opendataportal.at). A
large portion, very often data of statistical nature, of these open data is published in form of
tables, encoded as common CSV files. This practice, however, is not ideal, because the overall
usefulness of the data would be greatly improved by making them into Linked Open Data. This
generally means to assign the individual pieces of content globally unique identifiers and link
them to other, external sources. In detail this involves:

1. Classifying the table columns, based on their content and context against existing
knowledge bases.

2. Assigning globally unique identifiers (URIs, or even national characters supporting IRIs) to
cell values according to Linked Data principles. Such identifiers may be reused from one of
the existing knowledge bases (e.g. DBpedia).

3. Discovery of relations between columns, based on the evidence for the relations in the
existing knowledge bases.

4. Converting the data in the tables and the annotations produced in the previous steps to
RDF; using proper data types, language tags, well-known Linked Data vocabularies (e.g.
RDF Schema, DBpedia Ontology, ...) and other RDF-related tools and technologies.

Odalic as a platform guides its users through this process and makes it easy to reproduce,
automate and customize. Based on the work of Ziqi Zhang and the prototype implementation
of the described algorithm, Odalic turns it into working, user-focused application and
introduces several major extensions and improvements to the original idea, while shifting the
focus toward already prepared CSV files, to serve the needs of parental project ADEQUATe. The
original TableMiner+ algorithm has itself established as a leading solution to the problem (see

 5

http://adequate.at/
https://github.com/ziqizhang/sti
https://www.ntu.ac.uk/staff-profiles/science-technology/ziqi-zhang
http://www.semantic-web-journal.net/content/effective-and-efficient-semantic-table-interpretation-using-tableminer-0
http://lov.okfn.org/dataset/lov/vocabs/dbpedia-owl
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/RDF/
https://www.w3.org/TR/tabular-data-primer/
https://www.w3.org/TR/rdf-schema/#ch_properties
http://wiki.dbpedia.org/
https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://www.w3.org/TR/rdf-schema/#ch_classes
https://en.wikipedia.org/wiki/Linked_data#Linked_open_data
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Open_data
http://data.opendataportal.at/
http://data.gv.at/

the original paper which compares it with alternative and legacy methods, distancing itself
strictly from attempts to apply general NLP solutions, wrapper inducing methods and other
means not tailored to work on actual tables). Development version of Odalic was a subject of
one of the workshops at Semantics 2016 conference and was met with positive response and
genuine interest. In cooperation with Mr. Zhang, more widespread user evaluation and
feedback gathering is planned in the near future.

Odalic platform consists of three key components:

2.1.1 Odalic Semantic Table Interpretation
 It is a server, deployable to Apache Tomcat as web archive, accessible and controllable

through REST API specified here. This allows to draw upon its resources (as demonstrated
by the UnifiedViews plugin) in new ways, unforeseen by the authors.

 Its users can provide extensive feedback on results of the automatic conversion, which our
modification of the original algorithm takes into account during subsequent runs.

 Users can add their own custom resources and use them for feedback and in the exported
data.

 It introduces ability to employ multiple knowledge bases at once.

 Allows export of results conforming to CSV on the Web draft specification or in popular
RDF serialization formats, such as Turtle and JSON+LD.

 Supports running of the conversions in independent tasks and their comfortable
management.

 Supports multiple users plus administrator, employing token-based authorization and
authentication friendly to further extensions.

 Includes necessary local and remote CSV files management.

 Task configuration is exportable in RDF for easier data provenance.

2.1.1.1 Summary of major implemented improvements over the original
TableMiner+ algorithm

 Queries resolving the table content are now, where possible, constrained to the
appropriate types, thus eliminating evidently wrong results.

 The original TableMiner+ algorithm used now deprecated Freebase knowledge base. Its
usage was substituted with support of DBpedia family of knowledge bases, general
support for bases accessible through SPARQL endpoints and the ADEQUATe PoolParty.

 All of the resources and predicates used in the code searching the bases have been
externalized to configuration files and are no longer hard-coded.

 6

https://grips.semantic-web.at/display/ADEQ/PoolParty+in+ADEQUATe
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-schema/#ch_introduction
https://www.w3.org/TR/rdf11-primer/#section-graph-syntax
https://www.w3.org/TR/tabular-data-primer/
https://cs.wikipedia.org/wiki/Representational_State_Transfer
http://tomcat.apache.org/
http://www.semantic-web-journal.net/content/effective-and-efficient-semantic-table-interpretation-using-tableminer-0

 The algorithm is now more robust and efficiently handles all errors in communication with
the knowledge bases.

 The algorithm now accepts constraints originating from a feedback provided by the user on
top of results from previous runs. This helps to fix mistakes in automatic conversion as well
as provides way to introduce custom annotations made by the users to the exported data.

 The algorithm was modified to allow computation of results forming a data cube, which
makes it much more usable in processing of statistical data.

2.1.2 Odalic UI
Odalic UI is a web application serving as a graphical user interface to the Odalic Semantic Table
Interpretation backend, allowing its users to extract and export Linked Data from provided CSV
files. Its key properties are the following:

 Pleasant, easy-to-use single-page user interface.

 The data and the computed annotations are presented in the form of interactive tables,
which makes it easy to overview the results, and simple to provide appropriate feedback
and customize the output.

 Relations between columns are neatly visualized and modifiable in a dynamic graph
component.

 Supports practically all of the server features, including separate user spaces, files and
tasks management.

 Support for runtime management and configuration of proxies to the knowledge bases is
provided as well.

2.1.3 Odalic UnifiedViews Plugin
The plugin is built atop the server API, making it easy to run the processing within the
UnifiedViews. UnifiedViews is a mature ETL tool specialized on processing of and into Linked
Data. Its capabilities allow to plan and schedule the use of Odalic Semantic Table
Interpretation in many intricate scenarios, combining its power with other present plugins. The
plugin itself manifests in the UnifiedViews as the so called Data Processing Unit (DPU), which
instances can become part of arbitrarily complex virtual pipelines. The plugin otherwise
follows a pattern similar to the case when the processing would be defined in the Odalic UI:
user specifies the input (which can now be the output of other DPUs), configuration, and
connects the Odalic DPU outputs (exported table annotations or even RDF) to inputs of other
DPUs. More can be found in UnifiedViews DPU user documentation.

 7

https://grips.semantic-web.at/display/UDDOC/3.+DPU+Templates+Section
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://grips.semantic-web.at/display/UDDOC
https://www.w3.org/TR/vocab-data-cube/

3 User interface

3.1.1 Home page
Odalic application homepage (main menu - link of the logo):

3.1.2 Signing up, logging in and account management
Before the first use of the application you must log in. When you are not logged in, you will be
automatically redirected to the login page from any other content page (Tasks, Files, etc.).
When you don't have an account yet, you must sign up. Please note that the e-mail
confirmations can be turned off by the server administrator. In that case the user is
logged in immediately when signing up.

3.1.2.1 Sign up

Sign up screen

Sign up page can be opened from the main menu - item Sign up on the right side. You must fill
your valid e-mail address, which serves as a username, and password (at least 8 characters).

 8

Sending of confirmation e-mail

Then you receive a confirmation message to the address you have provided.

Sign-up confirmation

Confirm you registration by following the link in the message.

When your account is activated, you can log in using the credentials you provided during sign-
up.

3.1.2.2 Log in

Log in screen

Log in page can also be opened from the main menu (item Log in on the right side). Simply fill
your registered e-mail and password.

Then the My account page is shown.

 9

3.1.2.3 Account management

My account screen

When you are logged in, the item My account is enabled in the main menu (right side).

Password change

From the My account page you can also change your password. The password change must be
also confirmed by the link sent to your e-mail.

After that, you must log in again with the new credentials.

3.1.3 New task
Page for creation of a new task configuration can be opened from the main menu - item Tasks
> Add new or from the List of tasks - button Add new at the bottom of the page.

3.1.3.1 Basic settings

Basic task settings include Task identifier and description. Task identifier must not be empty
and may contain only alphanumeric characters, spaces, dots, commas, underscores and
dashes. After creation the task identifier cannot be changed, but you can always re-import the
task under different identifier.

 10

3.1.3.2 Setting the input file

You can select one of the already defined files, than skip to the File format configuration. Or
you can add a new file. There are two options to do that:

Local files

You can upload a file from your device. The identifier will be filled automatically with the file
name, but you can change it (restrictions are the same as for the task identifier).

Remote files

Or you can attach a remote file. Just fill the location of the remote file and custom identifier.

 11

File format configuration

Select some file for processing in the task from the list of uploaded or attached files labelled
Selected file. You can optionally configure format settings of the selected file (the dialog is
opened in modal window):

You can select some of predefined values or you can fill custom values. Custom character set
names must be on of those provided in
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html. Delimiter
separates records in one row. Quote character marks start and end of section where delimiters
are ignored. Escape character escapes the quote character. Comment marker turns on
comments until the end of line. You can also tell the application to Ignore empty lines.

 12

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

3.1.3.3 Knowledge bases

Select knowledge bases which will be used in the task processing. Available knowledge bases
and their properties are set by configuration files. Their structure is described at Configuration
part of the developer documentation. To turn them on they must be linked to from the main
configuration file.

Select also the primary knowledge base, which is modifiable, so it will be used for proposing
new entities. During export of results, the concepts from the primary knowledge base are
preferred.

3.1.3.4 Processing

In the last section you can restrict the number of lines processed in the task (including the
header). Also check whether you want to process the file as statistical data - in this case the
relation discovery phase will be skipped, but statistical annotations will be assigned instead.
They are then used when exporting results according to the RDF data cube standard.

You can save the task, save and immediately run, or cancel the changes.

3.1.4 List of tasks
Page with list of tasks can be opened from the main menu - item Tasks > List of tasks.

 13

https://www.w3.org/TR/vocab-data-cube/

You can add new task by the button at the bottom of the page.

3.1.4.1 Actions

The actions that are available for each task (but can be limited according to its current state)
are represented by the buttons in the Actions column.

 ("Play" button) - to run the task, which will submit it to the execution service.

 ("Stop" button) - to stop the task execution (only when the task is running).

 14

 ("Window-arrow" button) - to see the result of the task (only when the execution
was finished).

 ("Down" button) - to download the task configuration.

 ("Wheel" button) - to edit the task configuration. Note that the result of the task is
deleted after any substantial configuration change which might change the result.

 ("Bin" button) - to delete the task. This will also unsubscribe the task from its
input file, making the file eligible for deletion, it this was the last task referring to it.

3.1.4.2 States

 (light blue icon) - the task is ready to be run (no result present).

 (dark blue icon) - the task is running.

 (green icon) - the task has finished (result exists).

 (yellow icon) - the task has finished (result exists), but there were some problems
(you can see the warnings if you try to display the result).

 (red icon) - the task execution failed (you can see the description of error if you
try to display the result).

3.1.5 Task import
Page for task import can be opened from the main menu - item Tasks > Import.

Task configuration can be downloaded as described on the List of tasks screen. You can import
the previously downloaded task configuration from an application instance which contains
files and bases that have the same name as those referred by the task. This is trivially satisfied
by the the instance itself. Just fill the task identifier and upload the configuration file. Task

 15

identifier must not be empty and may consist only of alphanumeric characters, spaces, dots,
commas, underscores and dashes. After creation the task identifier cannot be changed.

3.1.6 List of files
Page with list of files can be opened from the main menu - item Input files > List of files.

 16

You can add a new file during creation of a new task (as described in New task). File can be
added also by the button at the bottom of the page or from the main menu - item Input files >
Add new.

3.1.6.1 Actions

 ("Down" button) - to download the file.

 ("Wheel" button) - to configure format settings of the file (dialog is opened in
modal window). See New task for the fields description.

 ("Bin" button) - to delete the file. Not that only files that are not referred by any
task can be deleted.

 17

3.1.6.2 Types

 ("Pin" icon) - indicates uploaded (local) file.

 ("Earth" icon) - indicates remote file. When the content of the file changes,
application will not register that and re-run of the task will produce different results.

3.1.7 Task result
Page with the result of semantic annotation can be opened from the List of tasks by the
"Window-arrow" button in the Action column of the table with tasks. Here you can see the
result of classifications, disambiguations, subject column detections and relation discovery
process, adjust feedback for the algorithm and export resulting annotations in the form of
extended CSV file, JSON annotations and RDF triples.

3.1.7.1 Classifications and disambiguations

In the first tab you can review resources suggested as classifications of the columns and
disambiguations of the cells. Resources from different knowledge bases are distinguished by
colours and made bold for the primary knowledge base. The name of corresponding
knowledge base is shown in a tooltip (when the mouse is over) of the resource label. The link
next to the resource label opens a resource web page (in a browser's new tab).

Missing resource annotation can be caused by several reasons: the way how the algorithm
viewed the processing of column is shown in the tooltip (when the mouse is over) of the
column header text. There are four possible ways the algorithm can view a column:

 Named entity - the algorithm recognized the values of column as named entities
(uniquely identifiable by an URI from the base) and performed classification and
disambiguation process normally.

 Non-named entity - the algorithm assessed that the values are not named entities (for
example when there are numbers), so the classification and disambiguation process was
skipped for that column.

 Ignored - the column was intentionally ignored, because the user asked so in the feedback
to previous task run.

 Compulsory - the column was classified and disambiguated although it was not
recognized as named entity, because the user asked so in the feedback to previous task
run.

 18

Related feedback

You can adjust basic feedback settings directly from the table of results. The lock icon shows
whether the feedback is set for the particular cell or column header. If so it should be reflected
by the algorithm in the next run of the task. Initially it is unlocked. When you adjust some
feedback, it locks automatically. You can also lock and unlock it manually.

 "Bin" icon - deletes resource annotation for particular knowledge base. For cells it means
that the disambiguation of the cell will be skipped, for column headers is means that the
whole column will be skipped (ignored).

 "Plus" icon - opens dialog for proposing a new resource, which will be then used for new
disambiguation of the cell (or classification of the column). It is possible to propose
resources only to the primary knowledge base (which must be modifiable).

 19

 "Arrow" icon - opens a dialog with detail of classification/disambiguation (described
bellow).

 20

The detail dialog shows annotations found for cell/column in their entirety. It offers more
options for feedback adjustment than the table perspective.

The smart select box displays chosen annotation for each knowledge base. When you click to
the select box next to the chosen annotation, other candidates suggested by the algorithm are

 21

displayed and you can select one of them as the new annotation resource. Every item in the
select box shows label, URI of the resource and a score computed by the algorithm. The
available commands in the smart select box are the following:

 By clicking the "i" icon you can open the resource web page (in the new tab, if the
underlying base has such HTML representation published).

 The "chain" icon opens the LodLive component with the corresponding resource.

 The "cross" icon deletes the annotation which means that the cell / column will be skipped
in the next run.

When you want to set another resource (different from the candidates provided by algorithm),
you can search it in the associated knowledge base (by the label). Then select one of the
results and Use it as the annotation. For the primary knowledge base you can also propose
completely new resource (as described above). By the last checkbox you can completely skip
the cell/ignore column (for all knowledge bases). The lock icon works in the same way as in the
result table.

3.1.7.2 Subject columns

In the second tab (available only for a task which does not process statistical data - see Task
configuration) you can review suggested subject columns. Subject columns serve as sources
for relation discovery (depicted in the third tab). The subject column suggested by algorithm is
emphasized in the table preview for each knowledge base. Grey marked column shows an
algorithm suggestion (or user feedback from previous run). When we want to mark another
columns as subject columns, just click on the desired columns and they will be emphasized by
orange color. Adjusting of this part of the feedback is also confirmed by the lock icon which
works in a similar way as in the previous tabs.

3.1.7.3

3.1.7.4 Relations

In the third tab (also only for task which does not process statistical data) you can review
suggested relations between the subject column and other columns. Relations are depicted in
the directed graph, where vertices represent columns and relations are represented by edges
labelled with predicate resources found in the knowledge bases. Click on the edge label opens
dialog with details similar to those for classifications or disambiguations in the first tab. Lock
icons work also in the same way.

 22

First mode of the graph, called Node dragging, allows dragging of the vertices around the
screen, thus changing the layout. When you switch to the second mode by the Link creation
button, then you can add new edges representing new relations between some columns. After
their creation it also opens the dialog with details, where you can search or propose the new
predicate resource annotation.

3.1.7.5 Tab for statistical data processing

When you set the statistical data processing check box to turned on state in the Task
configuration, the subject column detection and relation discovery parts of the algorithm are
skipped. The algorithm instead prepares statistical annotations for a data cube. This means
that the algorithm will determine which columns are dimensions and which one measures.
Initially all named entity columns are considered for dimensions and non-named entity
columns for measures.

 23

You can eventually change this decision. "Bin" icon removes a column from particular group,
"Add to ..." buttons add selected column to the group.

After that you should set the predicate resource in a way similar to classification or
disambiguation. "Plus" icon proposes new resource, lock icon confirms the settings and
"Arrow" icon opens the dialog with details, where you can search resources in the knowledge
base. Predicate resources are set only for the primary knowledge base. The predicates are
eventually used in the next run of the algorithm (if you hit Reexecute) for creating the so-called
"Observations" according to the data cube vocabulary.

 24

https://www.w3.org/TR/vocab-data-cube/

3.1.7.6 Reexecute

To consider changes which were provided as a feedback, the algorithm must be reexecuted.
You can reexecute the task directly by the "Reexecute" button. Or you can just save the
provided feedback by the "Save" button and start the execution later.

3.1.7.7 Export

At any time you can export the results by buttons at the end of the Result page. Only the result
of the last finished execution is used as basis for the exports (thus ignoring a feedback that
was not baked in by the task re-execution).

 Extended CSV - file containing columns of the task input file plus extra columns with
annotations (disambiguation resources) . The extra columns are easily distinguishable from
the original ones, because they are named *_url where * stands for the original column
name.

 Annotations - annotations for columns of the extended CSV file according to the CSV on the
Web standard (including annotations of virtual columns used for classifications, relations
or statistical data cube).

 RDF - linked data triples in form of RDF describing disambiguated values with classification
and relations (or data cube observations in case of statistical data processing).

o There are two common RDF formats available: Turtle and JSON-LD.

3.1.8 Knowledge base import
Page for knowledge base import can be opened from the main menu - item Knowledge bases >
Import.

Knowledge base configuration can be downloaded as described on the List of knowledge
bases screen. Just fill the knowledge base identifier and upload the configuration file.
Knowledge base identifier must not be empty and may consist only of alphanumeric
characters, spaces, dots, commas, underscores and dashes. After creation the knowledge base
identifier cannot be changed.

 25

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/tabular-data-primer/
https://www.w3.org/TR/tabular-data-primer/

3.1.9 List of knowledge bases
Page with list of knowledge bases can be opened from the main menu - item Knowledge bases
> List of knowledgebases.

New knowledge base can be added by the button at the bottom of the page or from the main
menu - item Knowledge bases > Add new . It can be also imported from configuration file
(import button at the bottom of the page or he main menu - item Knowledge bases > Add

 26

new) or user can derivete a new knowledge base from the already inserted knowledge base
by the "clone" button in the column Actions.

3.1.9.1 Actions



("Down" button) - to download the knowledge base configuration.



("Wheel" button) - to configure configuration of the knowledge base (dialog is opened in
modal window). See New knowledge base for the fields description.

 ("Clone" button) - to derivate a new knowledge from the already inserted
knowledge base. This action shows the pre-filled form based on the selected knowledge
base for the creation the new knowledge base.



("Bin" button) - to delete the knowledge base. Only knowledge bases that are not referred
by any task can be deleted.

3.1.10 New knowledge base
Page for creation of a configuration to a new knowledge base proxy can be opened from the
main menu - item Knowledge bases > Add new or from the List of knowledge bases (button Add
new at the bottom of the page or "clone" button in the column Actions) .

The configuration of a new knowledge base is divided into four parts - Main, Search, Propose
and Advance.

3.1.10.1 Main

Main knowledge base settings include the required knowledge base identifier, end-point URL
and an optional description. The knowledge base identifier must not be empty and may
contain only alphanumeric characters, spaces, dots, commas, underscores and dashes. After
creation the knowledge base identifier cannot be changed, but you can always re-import the

 27

knowledge base under different identifier. End-point URL must be a valid URL in the standard
format referring to an available knowledge base.

3.1.10.2 Search

In search part you can set parameters for searching user entities or properties, such as type of
search, preferred or useful classes and prefixes.

Text searching method offers three types of searching - fulltext, exact match or substring. Search
times depend on the chosen type. Also the fulltext might not be supported by the chosen
base, choose other methods in that case.

In Language tag you can be set language shortcut for searching. Usually we choose the most
common in the chosen knowledge base.

Skipped attributes offer a modifiable list of attributes that are skipped during property
searching because they are inappropriate for some reason (too general, resulting in unwanted
outputs,...).

Skipped classes offer a modifiable list of classes that are skipped when entity searching
because they are inappropriate for some reason too.

 28

3.1.10.3 Used groups

What follows is the list of available groups (some of them are part of the default installation,
but other can be added by hitting the Add group button bellow the table). Groups are used to
describe the structure of the base, mainly what predicates are used indicate instance-of-
relations, what types are used and so on. These are vital for proper behaviour of the
algorithm. When the Autodetected option is on, the application attempts to deduce the used
groups before every task run by querying the base. The user can override this behaviour and
choose the groups manually by un-checking the Autodetected check-box and checking the
desired groups in the table. The groups can be further edited or even removed using the
associated buttons.

 29



("Wheel" button) - to edit the group properties.



("Bin" button) - to delete the group properties.

Group properties

In the group properties the user can set URIs for the predicates and types that form a cohesive
set used in the common bases to denote their structure. it is not necessary to have all the
subgroups non-empty, but overall at least one of the used groups must have at least the
instance-of and label predicates set.

 30

3.1.10.4 Propose

In the propose section the user can set several properties if he wants to create a primary
knowledge base proxy configuration. This means the user can insert own proposals for entities
or properties into this modifiable knowledge base, also it can be used to break ties in conflicts.

If Insert enabled check-box is marked, it shows the expanded form depicted below.

Insert end-point URL must be a valid URL in the standard format referring to an available
knowledge base endpoint dedicated to modifying the base. If this field is empty the algorithm
uses end-point URL from the previous step Main.

Insert to graph keeps the graph where the new proposal will be saved. If this field is empty, the
algorithm uses default graph.

User classes prefix sets the prefix of URL for the user proposal of class or a property and User
resource prefix sets the prefix of URL for the user proposal that is not a class or property.

 31

Object property type and datatype property type allow to configure the types used to denote the
two kinds of properties, where the first one relates individuals resource, while the latter one
an individual and a literal of some data type, e.g. string.

3.1.10.5 Advanced

In the advanced section the user can add some special key-values for new knowledge bases if
they support them (for example some tuning options, additional authorization attributes) and
he or she can provide authorization values to access bases protected by basic authorization
according to the Type. So far only the SPARQL-based bases are supported (but the developers
are free to add other). The interpretation of the keys and their values depends on the chosen
type. The provided SPARQL type implementation neither requires nor supports any.

 32

4 REST API specification

4.1.1 Content wrapping and stamps
All regular API responses (which are of media type application/json) share the same format:

 33

{ status: XXX, type: "YYY", payload: ZZZ, stamp:
"client_defined_string" }

The status contains an integer, the same as the code of the HTTP response itself. The type is
either DATA or MESSAGE string. When the type is DATA, the payload contains a serialized domain
object. When the type is MESSAGE, than the payload has the following standard format:

{ text: "AAA", additionalResources: ["BBB", "CCC", ...],
debugContent: "DDD" }

The message itself is stored in the text, which may contain confirmation message or a
message associated with an exception, depending on the status code of the response. The
additionalResources is an array of URI strings, that may provide the client programmer with
additional resources (usually documentation) to help him or her understand the message or
debug its causes. The debugContent holds additional piece of information essential in
debugging the call (usually stack trace) when the application server is in debug mode. The
text and debugContent can be null (or non-existent in the message), although in case of the
text this is not recommended. The additionalResources cannot be null, but an empty array at
most, when no additional resources can be provided. The wrapping was introduced as a mean
of making the interpretation of the response simpler for the client. The client can now
determine the basic flow of processing of the response without the need to parse the payload.

The stamp field contains a string, that was sent to server by client in the request that originated
the sent response. Clients can add an optional query parameter named stamp (e.g.
"&stamp=client-set-string") with a value of their choosing to every request URL, and the
server will send it back to them as a part of the response wrapping object.

To save space the following examples present data payloads in an unwrapped form, in which
case the type is assumed to be DATA and the status code is as specified for the HTTP response.
When the client sends data to server, the wrapping is naturally not used. Also when the
returned media type is not an application/json or when the returned content is a result of
explicit export (such is the case of the annotated table), the response is also not wrapped and
in case of error only the error status is set (as HTTP header) an no wrapped JSON message is
sent. Unless specified otherwise, the server can leave fields with null values from the result
out.

The following examples use a http://odalic.eu/odalic/ as the API calls URL prefix, where
./odalic is the API root. Strings enclosed with { and } stand for custom identifiers. All calls
unless said otherwise require Authentication and authorization via Authorization header with
its value set to "Bearer <issued token>".

 34

4.1.2 HTTP error codes and headers
The API follows standard conventions and returns appropriate HTTP status codes. The 500
should be returned only when the server itself fails. Less common codes will be described in
individual cases. The server respects and in some cases (export, input download) even
discriminates media types set in Accept and Content-Type headers.

4.1.3 Signing up, authentication and authorization
 All API calls apart from those that allow to sign up, confirm registration or change

password, require token authentication from the client as introduced in MISSING LINK .

o The authentication is done by passing a token issued by the server for a client in the
standard Authorization header. It must start with Bearer <token>, where Bearer is a
constant string (a standard way of telling the server which authentication scheme is
used) separated from the token by a single space.

 User signs up by providing an email address and password and following the confirmation
link sent to the provided address.

 User can set a new password by providing the old one and new one and following the
confirmation link sent to the provided address. This also invalidates issued authentication
tokens.

 Confirmation and authentication tokens have limited expiration time, set in the server
configuration at config/sti.properties.

 All registered users share the same role of a common user. Apart from them a singular
administrator account is created based on the details provided in the
config/sti.properties. This account has all the capabilities of a regular user, but it can
also list all the users and impersonate them by adding "users/{userId}" at the beginning of
the request path. These URLs are valid for the regular users too, but are unnecessary,
because the server has the user already authenticated and accessing other users'
resources results in authorization errors.

 Note that the signing up, authentication and authorization features require proper server
configuration of the mail service, administrator account, appropriate confirmation links
and other!

 As a result of this, all tasks and files (but not knowledge bases or their entities) live in
separate name spaces and users can only access those which they own. This also means

 35

that two users can access the same URL (e.g. when they both named their files the same),
but its content will differ. This also helps to maintain partial backward compatibility for the
previous version of the API, which assumed a single user.

4.1.4 Users
 (1) POST http://odalic.eu/odalic/users/

 (2) GET http://odalic.eu/odalic/users/ (only for the administrator)

 (3) POST http://odalic.eu/odalic/users/confirmations

 (4) POST http://odalic.eu/odalic/users/authentications

 (5) GET http://odalic.eu/odalic/users/{user@odalic.eu}

 (6) PUT http://odalic.eu/odalic/users/{user@odalic.eu}/password

 (7) POST http://odalic.eu/odalic/users/passwords/confirmations

 (8) DELETE http://odalic.eu/odalic/users/{user@odalic.eu} (only for the administrator)

 Query (1) signs the user up using the user's chosen credentials (valid e-mail and password;
see (US1) for example).

o This call does not require token authentication.

o Although the user is signed up, its calls are not authorized until the provided e-mail
address is confirmed via the link sent to his or her email. See (3).

 Query (2) allows the administrator to list the active users. It returns array of (US3).

o Administrator's authentication works the same way as for the regular users, see (4).

 Query (3) accepts a confirmation token (see (US2)). When it is valid and identifies a signed-
up user, its account is activated.

o This call does not require token authentication.

o Only active user are able to authenticate and get the access token issued, see (4).

o This call is also initiated by a web client, when its user arrives at the address
specified in config/sti.properties that was sent within the confirmation e-mail.

 Query (4) accepts user credentials (the same as (1), see (US1)) and validates them against
the set of active users. When OK, access token is issued as a response (same format as
(US2)).

 36

o This call does not require token authentication.

 Query (5) only returns the calling user e-mail and role as demonstrated in (US3).

 Query (6) allows the user to change the password. It accepts (US4), which contains the old
and new one. The old one is used to authenticate the user.

o This call does not require token authentication.

o The change does not take effect until the confirmation token is provided, see (7).

 Query (7) confirms the setting of the new password. It accepts confirmation token (US2)
whose value was sent in the e-mail (the same process as for the user activation).

o This call does not require token authentication.

o When the password is changed, all previously issued authentication tokens are
invalidated and their use will result in authentication error.

 Query (8) unschedules all the user's tasks, deletes his or her tasks and files and finally
deletes the user's entry, thus prevent him or her to log in.

4.1.4.1 (US1)

{ "email": "test@odalic.eu ", "password": "3*(ew4zpor8ad 89z
/*09892*(^Y&" }

(US2)

{ "token":
"eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJzaWdudXAiLCJpc3MiOiJPZGFsaWMiLCJle
HAiOjE0ODU3NTQwMzAsImp0aSI6IjkzOTU2MjUyLTk2ZTMtNGE0MC05ZWE3LTlmYzQ1
MmM1MTkxMyJ9.d0tIzt8O_P-QhGZHswBF-KbP9v8V1wscLK5Cph1i_a0" }

 (US3)

 { "email": "test@odalic.eu", "role" : "USER" }

(US4)

{ "oldPassword": "3*(ew4zpor8ad 89z /*09892*(^Y&", "newPassword" :
"much easier password" }

 37

4.1.5 Files
 (1) PUT http://odalic.eu/odalic/files/{file_name}

 (2) GET http://odalic.eu/odalic/files/{file_name}

 (3) DELETE http://odalic.eu/odalic/files/{file_name}

 (4) GET http://odalic.eu/odalic/files/

 (5) PUT http://odalic.eu/odalic/files/{file_name}/format

 (6) GET http://odalic.eu/odalic/files/{file_name}/format

 Query (1) uploads a file description (FS1) of a remote file or a cached local file, depending
on the accept type (in which case (FS1) does not apply, only the file itself is uploaded)

o Identifier 'file_name' must be unique. Please note that the identifier can contain
only alphanumeric characters, underscore, dash, space, comma - all must be URL
encoded.

o If the MIME type produced by the client is multipart/form-data, then the server
expects only the file itself in the payload under input part label.

o If the MIME type produced by the client is application/json, then the server expects
only the remote file description containing and assumes that the location is
specified by the location attribute in the sent JSON object. The location can contain
any valid URL.

o The upload is non-resumable.

o There is also available an alternative POST API call at ../files URL for the
multiplart/form-data version, which derives the ID from the name of the uploaded
file.

o The format field is optional and allows for a remote file to immediately specify its
format. Only the fields in the example (whose names are self-explanatory) are
supported. The quoteCharacter, escapeCharacter, commentMarker can be set to null
or omitted (in that case a default parser value is set or the parsing is automatic in
that aspect). For a file that has been uploaded vie multipart/form-data, a default
format (shown in the (FS1) example) is set and must be configured (if not suitable
for the data) by a separate subsequent API call (see (5), (6)). The charset field value
is expected to be a canonical name recognized by Java NIO (first column at
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html).

 Query (2) returns either a file description (FS2) for file with id 'file_name' or the file itself,
depending on the MIME type set by the client.

o If the MIME type is set to application/json, then the file description object is
returned.

 38

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

o If the MIME type is set to text/csv, then the file specified in the location is provided.
In case of remote location, the server attempts to download the file from the
location and passes it as its own.

o See (FS2) for output format of the file description. Notice the cached attribute that
distinguishes uploaded (cached) files from the remote ones.

 Query (3) deletes the file (if local) and its corresponding file description.

o Returns HTTP 406 Conflict and an error message containing the IDs of the referring
tasks, when the file is still utilized in some task configuration.

 Query (4) returns a list of all the files.

o See (FS3) below for further details on the returned data.

 Query (5), (6)

o Only the fields in the payload example (FS4) (whose names are self-explanatory) are
supported. The quoteCharacter, escapeCharacter, commentMarker can be set to null
or omitted when put (in that case a default parser value is set or the parsing is
automatic in that aspect). The charset field value is expected to be a canonical
name recognized by Java NIO (first column at
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html).

4.1.5.1 (FS1)

{ "location": "http://odalic.eu/odalic/files/file_name", "format":
{ "charset" : "UTF-8", "delimiter" : ";", "emptyLinesIgnored" :
true, "quoteCharacter" : null, "escapeCharacter" : null,
"commentMarker" : null } }

4.1.5.2 (FS2)

{ "id": "file_name", "uploaded": "yyyy-MM-dd HH:mm", "owner":
"no_meaning_in_this_version_just_some_string", "location":
"http://odalic.eu/odalic/files/file_name", "format": { "charset" :
"UTF-8", "delimiter" : ";", "emptyLinesIgnored" : true, },
"cached": false }

4.1.5.3 (FS3)

[{ "id": "file_name", "uploaded": "yyyy-MM-dd HH:mm", "owner":

 39

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

"no_meaning_in_this_version_just_some_string", "location":
"http://odalic.eu/odalic/files/file_name", "format": { "charset" :
"UTF-8", "delimiter" : ";", "emptyLinesIgnored" : true }, "cached":
false }, ...]

4.1.5.4 (FS4)

{ "charset" : "windows-1250", "delimiter" : ",",
"emptyLinesIgnored" : true, "quoteCharacter" : "\"",
"escapeCharacter" : "\\", "commentMarker" : "#" }

4.1.6 Tasks
 (1) PUT http://odalic.eu/odalic/tasks/{task_id}

 (2) GET http://odalic.eu/odalic/tasks/{task_id}

 (3) DELETE http://odalic.eu/odalic/tasks/{task_id}

 (4) PUT http://odalic.eu/odalic/tasks/{task_id}/configuration

 (5) GET http://odalic.eu/odalic/tasks/{task_id}/configuration

 (6) PUT http://odalic.eu/odalic/tasks/{task_id}/configuration/feedback

 (7) GET http://odalic.eu/odalic/tasks/{task_id}/configuration/feedback

 (8) GET http://odalic.eu/odalic/tasks/{task_id}/configuration/feedback/input

 (9) PUT http://odalic.eu/odalic/tasks/{task_id}/execution

 (10) DELETE http://odalic.eu/odalic/tasks/{task_id}/execution

 (11) GET http://odalic.eu/odalic/tasks/{task_id}/result

 (12) GET http://odalic.eu/odalic/tasks/result/rdf-export

 (13) GET http://odalic.eu/odalic/tasks/{task_id}/state

 (14) GET http://odalic.eu/odalic/tasks/?states={false, true}&orderedBy={id,created}

 Query (1) creates a new task definition with the identifier 'task_id'.

o See (TS1) for the task description format. The id field is optional, but when filled,
then it must be equal to the id provided in the URL.

o Also consumes text/turtle (must be set as the Content-Type of the request) in the
format generated by (2) when text/turtle requested.

 Query (2) returns the task definition (TS1).

o Also produces text/turtle when the Accept header is set to text/turtle.

 40

 Query (3) removes the task. Although the task is deleted, any running computation might
not be stopped immediately.

 Query (4) sets a new task configuration for possible next execution.

o See (TS2) for the format description. The primary base has to always be set to one
that is modifiable (see Bases).

o The rowsLimit field when set to something else than null cuts of the input after the
specified number of rows (the rowsLimit must be non-negative when set, and less
than or equal to 231 - 1, which is also the maximum supported number of rows for
the files). The uploaded files remain intact.

 Query (5) returns the task configuration object (TS2).

o The usedBases field must be a subset of the available bases. The primaryBase must
be one of the used and modifiable ones. The usedBases can be left out or set to null,
in which case it defaults to all available bases.

 Query (6) sets a feedback that the algorithm should take into account in case of next
execution.

o See (TS3) for the format description.

o The subjectColumnPositions are a map from knowledge bases to column positions.

 Query (7) returns the feedback set.

 Query (8) returns the structured input of the task, upon which the feedback can be set.

o See (TS4) for the format description.

 Query (9) submits the task for execution.

o Any previous executions must be either finished or cancelled.

o The execution object format is described in (TS5), the draft flag is ignored for now.
Returns 409 Conflict when the task is already running.

 Query (10) cancels task execution. Returns 409 Conflict when the task has already finished.

 Query (11) returns the result of task execution.

o The result contains the annotations in structured format as described in (TS6).

o The call waits for the process to finish.

o There is also an option to PUT the modified result back to server. This usage is
discouraged, but some clients may use it to store work in progress when they do

 41

not have a capability to keep the results themselves.

 Query (12) exports the result (when available) in a chosen (by the MIME type in the Accept
header of the request - text/turtle and application/ld+json are supported) format.

 Query (13) return the state of execution.

o See (TS7) for format description. Notice the reduction and change of name of some
states.

 Query (14) returns a list of all tasks.

o When the state query parameter is present and set to true, than the tasks
aggregated with their states are provided: see (TS8) for format description.

o The state parameter can be left out or set to false, then the results is just an array of
individual tasks as described in (TS1).

o When the orderedBy parameter is present and set to id or if it is missing, the tasks
are sorted by their IDs in ascending order. This parameter can be also set to
created, then the tasks are sorted by modification time in descending order.

(TS1)

{ "id": "task_id", created: "yyyy-MM-dd HH:mm", "configuration":
{ ... }, "description": "a simple testing task" }

For configuration object description, see below.

(TS2)

{ "input": "file description ID", feedback: { ... }, "usedBases": [
{ "name": "DBpedia" }, { "name": "DBpedia German" }],
"primaryBase": { "name": "DBpedia" }, "rowsLimit": 345,
"statistical" : false }

(TS3) (All indices are zero-based)

{
 "subjectColumnsPositions": { "DBpedia": [{ position: { index:
5 } }, ...], "wikidata": [{ position: { index:
2 } }, ...], ...},
 "columnIgnores": [// Columns are ignored for the rest of
processing.

 42

 { position: { index: 6 } },
 ...
],
 "columnCompulsory": [// Columns are compulsorily processed
(class./disamb.) as named entities (even when they are non-named
entities).
 { position: { index: 5 } },
 ...
],
 "classifications": [
 {
 position: { index: 5 },
 annotation: {
 "candidates": { // Should contain initial and even
the proposed candidates, even if they were not chosen.
 "dbpedia": [
 {
 "entity": { "resource":
"http://example.com/hoho/Lala", "label": "Ble" },
 "score": { "value": 0.5 },
 },
 ...
],
 "wikidata": ...,
 ...
 },
 "chosen": {
 "dbpedia": [
 {
 "entity": { "resource":
"http://example.com", label: "Ble" },
 "score": { "value": 0.5 }
 },
 ...
],
 "wikidata": ...,
 ...
 }
 }
 },
 ...
],
 "columnAmbiguities": [// Skipping disambiguation in all cells
of the specified columns.
 { position: { index: 6 } },
 ...
],
 "ambiguities": [// Skipping disambiguation for the cells
provided.

 43

 { position: { rowPosition: { index: 6 }, columnPosition:
{ index: 6 } } },
 ...
],
 "disambiguations": [
 {
 position: { rowPosition: { index: 5 }, columnPosition:
{ index: 9 } },
 annotation: { ... } // Same as above.
 },
 ...
],
 "columnRelations": [
 {
 position: { first: { index: 5 }, second: { index:
9 } },
 annotation: { ... } // Same as above.
 },
 ...
],
 "dataCubeComponents": [
 {
 position: { index: 5 },
 annotation: {
 "component": {
 "dbpedia": "DIMENSION", // Possible values:
"DIMENSION" or "MEASURE" or "NONE".
 "wikidata": ...,
 ...
 },
 "predicate": {
 "dbpedia": [
 {
 "entity": { "resource":
"http://example.com", label: "Ble" },
 "score": { "value": 1.0 }
 },
 ...
],
 "wikidata": ...,
 ...
 }
 }
 },
 ...
]
}

 44

(TS4)

{ "headers": ["country", "city", ...], "rows": [["Albania",
"Tirana"], ...] }

(TS5)

{ draft: false }

(TS6)

Suppose the following input table that will be processed by the algorithm:

City Country Population Rating

Paris France 2,240,621 7.9

Prague 1,267,449 8.1

Melbourne 4,529,500 3.4

The result could look like this:

Code Block 1 Result format

{
// Subject columns
"subjectColumnsPositions" : { "wikidata": [{ position:

{ index: 2 } }, ...], "yago": [{ position: { index:
5 } }, ...] },

"warnings": ["Failed to disambiguate 7893739ye9y7yad", "Beware
of JAG-JAG bird!"]

// Column headers annotations
 "headerAnnotations" : [

// City
 {

"candidates" : {
"wikidata" : [

{
"entity": {

"resource" :
"http://www.wikidata.org/wiki/Q515",

"label" : "city" ,
 "prefixed" : "wikidata:Q515",

"prefix" : { "with" :
"wikidata", "what" : "http://www.wikidata.org/wiki/" },

 45

"tail" : "Q515"
},
"score" : 0.79

}
],
"yago" : [

{
"entity" : {

"resource" :
"http://yago.org/city",

"label" : "city"
 "prefixed" : "yago:city",

"prefix" : { "with" : "yago",
"what" : "http://yago.org/" },

"tail" : "city"
},
"score" : 0.5

}
]

},
"chosen" : {

"wikidata" : [],
"yago" : [

{
"entity" : {

"resource" :
"http://yago.org/city",

"label" : "city"
 "prefixed" : "yago:city"

"prefix" : { "with" : "yago",
"what" : "http://yago.org/" },

"tail" : "city"
},
"score" : 0.5

}
]

}
 },

// Country
 {

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :
"http://www.wikidata.org/wiki/Q6256",

"label" : "country",
 "prefixed" : "wikidata:Q6256"

 46

"prefix" : { "with" :
"wikidata", "what" : "http://www.wikidata.org/wiki/" },

"tail" : "Q6256"
},
"score" : 0.91

},
{

"entity" : {
"resource" :

"https://www.wikidata.org/wiki/Q7275",
"label" : "state",

 "prefixed" : "wikidata:Q7275",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q7275"

},
"score" : 0.65

}
],
"yago" : [

{
"entity" : {

"resource" :
"http://www.yago.org/country",

"label" : "country",
 "prefixed" : "yago:country",

"prefix" : { "with" : "yago",
"what" : "http://www.yago.org/" },

"tail" : "country"
},
"score" : 0.75

}
]

},
"chosen": { "wikidata" : [], "yago": [] }

 },

// Population
 {

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :
"http://www.wikidata.org/wiki/Q33829",

"label" : "population"
 "prefixed" : "wikidata:Q33829",

"prefix" : { "with" :
"wikidata", "what" : "http://www.wikidata.org/wiki/" },

 47

"tail" : "Q33829"
},
"score" : 0.88

}
]

},
"chosen": { "wikidata" : [], "yago": [] }

},

// Rating
 {

"candidates" : {},
"chosen": { "wikidata" : [], "yago": [] }

}
],

// Cells annotations
"cellAnnotations" : [

// 1st row
[

// Paris
{

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :
"https://www.wikidata.org/wiki/Q90",

"label" : "Paris",
"prefixed" :

"wikidata:Q90",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q90"

},
"score" : 0.92

}
]

},
"chosen": { "wikidata" : [] }
},

// France
{

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :

 48

"http://www.wikidata.org/wiki/Q142",
"label" : "France",
"prefixed" :

"wikidata:Q142",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q142"

},
"score" : 0.92

}
]

},
"chosen": { "wikidata" : [] }

},

// 2,240,621
{

"candidates" : { "wikidata" : [] },
"chosen": { "wikidata" : [] }

},

// 7.9
{

"candidates" : {"wikidata" : []},
"chosen": { "wikidata" : [] }

}
],

// 2nd row
[

// Prague
{

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :
"http://www.wikidata.org/wiki/Q1085",

"label" : "Prague",
"prefixed" :

"wikidata:Q1085",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q1085"

},
"score" : 0.92

}
]

}

 49

},

// Empty
{

"candidates" : {"wikidata" : []}
},

// 1,267,449
{

"candidates" : {"wikidata" : []}
},

// 8.1
{

"candidates" : {"wikidata" : []}
}

],

// 3rd row
[

// Melbourne
{

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :
"https://www.wikidata.org/wiki/Q3141",

"label" : "Melbourne",
"prefixed" :

"wikidata:Q3141",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q3141"

},
"score" : 0.92

}
]

}
},

// Empty
{

"candidates" : {}
},

// 4,529,500
{

"candidates" : {}

 50

},

// 3.4
{

"candidates" : {}
}

]
],

// Relations between columns (may be sparse)
 "columnRelationAnnotations": {

// Indicates relations for the 1st column.
"0" : {

// Indicates relations between the 1st and 3rd column
"2" : {

"candidates" : {
"wikidata" : [

{
"entity" : {

"resource" :
"http://www.wikidata.org/wiki/Property/P1082",

"label" : "has
population",

"prefixed" :
"wikidataprop:P1082",

"prefix" : { "with" :
"wikidataprop", "what" :
"http://www.wikidata.org/wiki/Property/" },

"tail" : "P1082"
},
"score" : 0.9
}

}
]

},
"chosen" : {

"wikidata" : [
{

"entity" : {
"resource" :

"http://www.wikidata.org/wiki/Property/P1082",
"label" : "has

population",
"prefixed" :

"wikidataprop:P1082",
"prefix" : { "with" :

"wikidataprop", "what" :
"http://www.wikidata.org/wiki/Property/" },

"tail" : "P1082"

 51

},
"score" : 0.9
}

}
]

}
}

 }
 },

// Statistical annotations
 "statisticalAnnotations" : [

// City
 {

"component" : {
"wikidata" : "DIMENSION",
"yago" : "DIMENSION"

},
"predicate" : {

"wikidata" : [],
"yago" : []

}
 },

// Country
 {

"component" : {
"wikidata" : "DIMENSION",
"yago" : "DIMENSION"

},
"predicate" : {

"wikidata" : [
{

"entity" : {
"resource" :

"http://www.wikidata.org/wiki/Q6256",
"label" : "country",
"prefixed" : "wikidata:Q6256",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q6256"

},
"score" : 1.0

}
],
"yago" : []

}
 },

 52

// Population
 {

"component" : {
"wikidata" : "MEASURE",
"yago" : "MEASURE"

},
"predicate" : {

"wikidata" : [
{

"entity" : {
"resource" :

"http://www.wikidata.org/wiki/Q33829",
"label" : "population",
"prefixed" : "wikidata:Q33829",
"prefix" : { "with" :

"wikidata", "what" : "http://www.wikidata.org/wiki/" },
"tail" : "Q33829"

},
"score" : 1.0

}
],
"yago" : []

}
},

// Rating

 {
"component" : {

"wikidata" : "NONE",
"yago" : "NONE"

},
"predicate": { "wikidata" : [], "yago": [] }

}
],

 // Column processing annotations
 "columnProcessingAnnotations" : [

// City
 {

"processingType" : {
"wikidata" : "COMPULSORY",
"yago" : "COMPULSORY"

}
 },

// Country
 {

"processingType" : {
"wikidata" : "NAMED_ENTITY",

 53

"yago" : "NAMED_ENTITY"
}

 },

// Population
 {

"processingType" : {
"wikidata" : "NON_NAMED_ENTITY",
"yago" : "NON_NAMED_ENTITY"

}
},

// Rating

 {
"processingType" : {

"wikidata" : "IGNORED",
"yago" : "IGNORED"

}
}

]
}

(TS7)
READY, RUNNING, SUCCESS, WARNING, ERROR

READY stands for created, not run yet, or cancelled task. RUNNING is self-
explanatory, SUCCESS means that result is ready, WARNING indicates that the result
is ready with warnings, but requires further user's attention. Finally ERROR means
no result was generated; the algorithm halted halfway with fatal error.

 54

(TS8)

Code Block 2 TS8

[
 {
 "id": "task_name1",
 "description": "a simple testing task",

 55

 "created": "2016-01-01 09:58",

 // Status of all tasks should be present. It is expected UI
will be polling only those that are in progress
 "status": "READY", // Follows the state convention.
 "configuration": {
 ...
 }
 },

 {
 /* ... */
 }
]

4.1.7 Bases
(1) GET http://odalic.eu/odalic/bases?modifiable={true|false}



o Returns array of available configured knowledge bases, see (B1) for payload
example (and (B2) for a detail of a single element).

 The valid values for textSearchingMethod are: fulltext, substring, exact.

o When modifiable is set to true (default, when not set, is false), only knowledge
bases supporting proposal (via insertion) are listed.

(2) GET http://odalic.eu/odalic/bases/{name}



o Returns a specific knowledge base configuration, see (B2) for payload example.

o When the accepted MIME type is text/turtle instead of application/json, it exports
the knowledge base in RDF serialized in to Turtle.

(3) PUT http://odalic.eu/odalic/bases/{name}



o Sets the specific knowledge base configuration, see (B2) for payload example.

 56

http://odalic.eu/odalic/

o When the content MIME type is text/turtle instead of application/json, the servers
assumes import of the knowledge base in the RDF format (mechanism similar to
Tasks import).

(4) DELETE http://odalic.eu/odalic/bases/{name}



o Removes the specific knowledge base configuration.

o May fail with 409 Conflict when in use by some task.

 (B1)

[{"name" : "German DBpedia", ... }, ...]

 (B2)

{"name" : "German DBpedia", "endpoint" :
"http://de.dbpedia.org/sparql", "description" : "German version of
DBpedia", "textSearchingMethod" : "fulltext", "languageTag" : "en",
"skippedAttributes" : ["http://www.w3.org/ns/prov#wasDerivedFrom",
...], "skippedClasses" :
["http://www.w3.org/2002/07/owl#Thing", ...],
"groupsAutoSelected" : false, "selectedGroups" : ["RDF", ...],
"insertEnabled" : true, "insertEndpoint" :
"http://de.dbpedia.org/sparql/insert", "insertGraph" :
"http://odalic.eu", "userClassesPrefix" : "schema",
"userResourcesPrefix" : "resource", "objectProperty" :
"owl:ObjectProperty", "datatypeProperty" : "owl:DatatypeProperty",
"login" : "bob", "password" : "1234", "advancedType" : "SPARQL",
"advancedProperties" : { "eu.odalic.custom.key" : "custom
value", ... } }

4.1.8 Advanced base types
(1) GET http://odalic.eu/odalic/advanced-base-types



o Returns array of available advanced base types, see (ABT1) for a detail of a single
element.

 57

http://odalic.eu/odalic/

o Shared by all users, accessible without users/{userId} part.

(2) GET http://odalic.eu/odalic/advanced-base-types/{name}



o Returns a specific knowledge base configuration, see (ABT1) for payload example.

o Shared by all users, accessible without users/{userId} part.

(ABT1)

{"name" : "SPARQL", "keys" : ["eu.odalic.custom.key",
"eu.odalic.another.key", ...], "keysToDefaultValues" :
{ "eu.odalic.another.key" : "Default value", ... },
"keysToComments" : { "eu.odalic.custom.key" : "Comment
example..." } }

4.1.9 Predicates and classes groups
(1) GET http://odalic.eu/odalic/groups



o Returns array of user's defined groups, see (G1) for a detail of a single element.



o Returns a specific user's defined group, see (G1) for payload example.

(2) GET http://odalic.eu/odalic/groups/{groupId}

(3) PUT http://odalic.eu/odalic/groups/{groupId}



o Sets user's defined group.

o See (G1) for payload example.

(4) DELETE http://odalic.eu/odalic/groups/{groupId}



o Removes the user-defined group.

o May fail when the group is used in some base definition with 409 Conflict.

 58

http://odalic.eu/odalic/

(G1)

{"id" : "DBpedia", "labelPredicates" :
["http://dbpedia.org/property/name", ...],
"descriptionPredicates" :
["http://dbpedia.org/ontology/abstract"],
"instanceOfPredicates" : ["http://www.w3.org/1999/02/22-rdf-
syntax-ns#type"], "classTypes" : ["http://www.w3.org/2000/01/rdf-
schema#Class", ...], "propertyTypes" :
["http://www.w3.org/1999/02/22-rdf-syntax-ns#Property", ...]}

4.1.10 Entities
 (1) GET http://odalic.eu/odalic/bases/{base}/entities?query={needle}&limit={20}

o Returns array of entities (not discriminating classes, resources, properties,...) in the
same format as in the Result (without the scores naturally), see (ES1).

o The base is the knowledge base where the search takes place.

o The query is a URL parameter of the string searched for.

o The limit is the maximum count of provided hits. Can be omitted and then 20 is
used as default.

o Deprecated.

 (2) GET http://odalic.eu/odalic/bases/{base}/entities/classes?query={needle}&limit={20}

o Returns array of classes in the same format as in the Result (without the score
naturally), see (ES1).

 The prefixed field contains the same content as the resource field, if the
prefix is not defined on the server for the resource URI. Otherwise the
prefixed contains the resource URI shortened by the use of prefix defined at
config/PrefixMapping.ttl.

 The prefix is always separated by a colon.

 When sent to server, the prefixed field is optional and ignored by the server.

 The prefix field contains an object consisting of with (the actual prefix
string) and what (associated URI) attributes. It is also optional and ignored
when sent to server.

 If the prefix is not defined, it is null or not even present.

 59

 The tail field contains the rest of the string after the prefix separator, when
the prefix is defined. Otherwise it is null. It is also optional and ignored when
sent to server.

 The base is the knowledge base where the search takes place.

 The query is a URL parameter of the string searched for.

 The limit is the maximum count of provided hits. Can be omitted and then
20 is used as default.

 (3) GET http://odalic.eu/odalic/bases/{base}/entities/resources?query={needle}&limit={20}

o Returns array of resources in the same format as in the Result (without the score
naturally), see (ES1).

 The base is the knowledge base where the search takes place.

 The query is a URL parameter of the string searched for.

 The limit is the maximum count of provided hits. Can be omitted and then
20 is used as default.

 (4) GET http://odalic.eu/odalic/bases/{base}/entities/properties?query={needle}&limit={20}

o Returns array of properties in the same format as in the Result (without the score
naturally), see (ES1).

 The base is the knowledge base where the search takes place.

 The query is a URL parameter of the string searched for.

 The limit is the maximum count of provided hits. Can be omitted and then
20 is used as default.

(ES1)

[{"resource" : "http://www.wikidata.org/wiki/Property/P1082",
"label" : "has population", "prefixed" : "wikidataprop:P1082",
"prefix" : { "with" : "wikidatapro", "what" :
"http://www.wikidata.org/wiki/Property/" }, "tail":
"P1082" }, ...]

 60

4.1.11 Proposing entities
 (1) POST http://odalic.eu/odalic/bases/{base}/entities/classes

o For payload format see (EP1).

o The base is the knowledge base where the proposed class will be created. It must
support insertion.

o Returns a newly created class, if nothing bad happens. Format conforms to (ES1).

 (2) POST http://odalic.eu/odalic/bases/ {base}/entities/resources

o For payload format see (EP2).

o The base is the knowledge base where the proposed resource will be created. It
must support insertion.

o Returns a newly created entity, if nothing bad happens. Format conforms to (ES2).

 (3) POST http://odalic.eu/odalic/bases/{base}/entities/properties

o For payload format see (EP3).

o The base is the knowledge base where the proposed property will be created. It
must support insertion.

o Returns a newly created entity, if nothing bad happens. Format conforms to (ES3)
with the exception that domain and range are currently ignored.

o The type attribute value is either "data" (indicating "Data-type property") or "object"
(for "Object-type" property), with "Object-type" being the default option when the
type is missing.

(EP1)

{"label": "Country", "alternativeLabels": ["State", ...], suffix:
"Class:C1033", "superClass" : {"resource" :
"https://www.wikidata.org/wiki/Class:C999", "label" : "State
formation" } }

(EP2)

{"label": "Prague(city)", "alternativeLabels": ["The capital city

 61

of Prague"], suffix: "Resource:R82123", "classes" : [{"resource" :
"https://www.wikidata.org/wiki/Class:C1080", "label" :
"City" }, ...]}

(EP3)

{"label": "capital", "alternativeLabels": ["seat of government"],
suffix: "Property:P23778", "superProperty" : {"resource" :
"https://www.wikidata.org/wiki/Property:P99", "label" : "political
centre" }, "domain" : {"resource" :
"https://www.wikidata.org/wiki/Class:C1080", "label" : "City" },
"range" : {"resource" : "https://www.wikidata.org/wiki/Class:C999",
"label" : "State formation" }, "type" : "data"}

5 UnifiedViews DPU

5.1.1 Introduction
The UnifiedViews DPU allows the user to run and schedule Odalic Semantic Table
Interpretation in combination with other plugins in UnifiedViews. In order to get yourself
familiarized with UnifiedViews and its concepts and usage follow the documentation.

5.1.2 Setting up a template

5.1.2.1 Retrieving authentication token

First obtain the authentication token. This can be done by accessing a web client that will share
the same server as the plugin. Log in and go to My account and click Show token to reveal it.
Copy the token to clipboard.

 62

https://grips.semantic-web.at/display/UDDOC
https://grips.semantic-web.at/display/UDDOC
https://grips.semantic-web.at/display/ADEQ/Introduction+to+Odalic+and+the+problem+it+solves#IntroductiontoOdalicandtheproblemitsolves-server
https://grips.semantic-web.at/display/ADEQ/Introduction+to+Odalic+and+the+problem+it+solves#IntroductiontoOdalicandtheproblemitsolves-server

5.1.2.2 Accessing plugin properties

Following the plugin installation , go to DPU Templates if you are not already there, and open
the t-odalic plugin properties by selecting it in the left column.

5.1.2.3 Template configuration

Go to the Template configuration tab and insert the Odalic server address to Host and paste
the obtained token to the Authentication token field. You can also set the other settings, but
it is usually better to set them for each instance individually.

 63

The mandatory Task configuration accepts exported task configuration as the input. The
following settings allow to set the format of the input CSV file, which the plugin expects as its
sole input. You can set the character encoding (using the names from
https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html) in the Input
character set, or row Records delimiter, you can tell the parser to Ignore empty lines.
Optionally you can set the Quoting character (to quote the strings containing delimiters),
Escaping character (which escapes quotes) and finally Comment marker. In any case do not
forget to Save the template.

 64

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

5.1.3 Using the instances

5.1.3.1 Creating pipeline

To use the set-up DPU instance you have to create a pipeline first. Go to Pipelines and click
Create pipeline.

5.1.3.2 Pipeline workbench

A workbench to construct UnifiedViews pipeline appears, with the list of available DPU
templates on the left. Pick the t-odalic template and drag it to the working plane and connect it
with other desired DPUs.

The Odalic DPU accepts only one mandatory file input and produces three file outputs:
extended CSV and the complementary table annotations and serialized RDF in Turtle format. All
three outputs are optional, that means they do not have to be connected to an input of
another DPU.

The following figure demonstrates the use of plugin by connecting its input to a DPU
downloading file from a remote location and its outputs to two plugins: the first one will
upload the extended CSV and the annotated table to some location, the second one will parse
the Turtle input into RDF model, which the user can for example connect to some RDF storage
or query with SPARQL DPUs.

 65

5.1.3.3 Instance configuration

Now is the time to set the instance of the t-odalic by clicking the gear icon which appears when
hovering with a mouse over the associated blue box. A dialog similar to the one configuring
the template appears. Export a task configuration from the web client to make it serve as the
blueprint for this DPU processing. Upload it using the Task configuration form component.
Its content will appear in the non-editable text area. You can Clear the configuration and
upload another if necessary. Save the instance specific settings.

 66

5.1.3.4 Debugging the pipeline

You can debug the sample pipeline fragment by hitting the bug icon on the uv-t-filesToRdf DPU
box. A reporting window will appear and after the processing finishes, it should look
something like the following figure. Notice the lines that have t-odalic in the DPU Instance
column, these are the messages sent by the Odalic DPU about its processing state.

 67

 68

5.1.3.5 Result preview

You can preview the parsed RDF output which was produced during the semantic table
interpretation by going to Browse/Query tab, selecting the uv-t-filesToRdf DPU and choosing
its rdfOutput. A table of parsed triples like on the following figure should appear.

In order to have a valid pipeline you must connect the RDF parsing plugin to some output
DPU. Nevertheless even this small example should give you a good grasp on how to tackle the
semantic table interpretation with UnifiedViews using the Odalic plugin.

 69

6 Glossary

6.1.1 W3C Linked Data Glossary
https://www.w3.org/TR/ld-glossary/

6.1.2 Project glossary
 administrator

o user with elevated rights (mainly can import knowledge bases, monitor other users'
tasks)

 Austrian open data catalogs

o data portals that serve as the source of the test data

o https://www.data.gv.at

o additionally https://www.opendataportal.at/

 cell disambiguation

o determining which RDF resource is represented by a literal string in the cell

 columns classification

o column classification annotates each NE-column with one concept, or in the case of
literal columns, associates the column to one property of the
concept assigned to the subject column of the table

 conversion

o the same as 'task'

 CSV meta-data

o CSV file description

o conforming to JSON schema specified at
https://www.w3.org/2013/csvw/wiki/Main_Page (see metadata)

o example here: http://data.opendataportal.at/dataset/kunstler-der-sammlung-des-
mumok/resource/e25640f8-a3e4-46d2-8a4f-9be471b115d2

 CSV schema

o see CSV meta-data

 70

http://data.opendataportal.at/dataset/kunstler-der-sammlung-des-mumok/resource/e25640f8-a3e4-46d2-8a4f-9be471b115d2
http://data.opendataportal.at/dataset/kunstler-der-sammlung-des-mumok/resource/e25640f8-a3e4-46d2-8a4f-9be471b115d2
https://www.w3.org/2013/csvw/wiki/Main_Page
https://www.opendataportal.at/
https://www.data.gv.at/
https://www.w3.org/TR/ld-glossary/

 DBpedia.org

o one of the existing Linked Data knowledge bases

 disambiguated entity

o result of disambiguation

 disambiguation

o see cell disambiguation

 execution

o processing of the input file according with Odalic algorithm based on the
TableMiner+

 execution service

o module providing execution

 feedback

o user input manually setting some of the result annotations or giving constraints to
the algorithm in order to improve results in the next run

 focused knowledge bases

o knowledge bases containing specialized, usually detailed information about certain,
well defined domain

o opposite of general knowledge bases

 Freebase

o on of the existing knowledge bases

o deprecated

 general knowledge bases

o knowledge bases containing general information without restriction to particular
topic

o opposite of focused knowledge bases

 input constraints

o see feedback

 JSON+LD

o JSON based format for encoding linked data

 knowledge base's SPARQL endpoint

o web service allowing querying the knowledge base using SPARQL

 71

 knowledge bases

o published and accessible collection of datasets composed of RDF triples (or quads if
named graphs are involved) and the accompanying infrastructure allowing to query
it, modify, search

 Linked Open Data Cloud

o http://lod-cloud.net/

 literal column

o column with data literal, e.g., plain string, number

 named graph

o extension of RDF

o created by extending triples to quads with additional information described by URI

o can be used to make the manipulation with RDF sets more flexible (adapted by
SPARQL)

o https://blog.ldodds.com/2009/11/05/managing-rdf-using-named-graphs/

 NE-column

o column with entity (currently, as long as it is a string with letters, it is considered as
named entity column)

 ontology

o a model for describing the world

o consists of a set of types, properties, and relationship types

o description of taxonomy, classification network

 OWL

o Web Ontology Language

o a family of languages for authoring of ontologies

o http://www.cambridgesemantics.com/semantic-university/owl-101

 owl:sameAs

o built-in OWL property that links an individual to an individual

o an owl:sameAs statement indicates that two URI references actually refer to the
same thing

 predicate

 72

http://www.cambridgesemantics.com/semantic-university/owl-101
https://blog.ldodds.com/2009/11/05/managing-rdf-using-named-graphs/
http://lod-cloud.net/

o second part of an RDF statement

o defines the property for the subject of the statement

o always a URI

o establishes the relationship between a subject and an object and makes the object
value a characteristic of the subject.

o visually connects subject and object in an RDF graph

 primary KB

o KB which is denoted as being the primary one - during export the concepts from
such KBs are preferred, and all the possible conflicts are resolved with respect to its
heightened priority.

 RDF data model

o a standard model for data interchange on the WebRDF

o uses URIs to name the relationship between things as well as the two ends of the
link (triple)

o allows for data merging even if the underlying schemas differ, specifically supports
the evolution of schemas over time without requiring all the data consumers to be
changed

o http://www.cambridgesemantics.com/semantic-university/rdf-101

 RDF data cube

o organization of RDF data indexed by its dimensions

o can be visualized as a hypercube

 RDF data format serialization

o encoding of RDF triples

o enables to store them permanently or transport over network

o many options (Turtle and similar, XML, JSON)

 RDF export configuration

o Configuration of the way how the classified, disambiguated data with relations
discovered, are exported to RDF. The template describing the format of the data
exported as RDF must be stored (e.g. in the form of SPARQL triple patterns, which
may be applied to all rows as the export is prepared).

 73

http://www.cambridgesemantics.com/semantic-university/rdf-101

o

?cell01 rdf:type ad:City; s:address ad:address. ad:address
s:postalCode ?cell05

 RDF store

o store keeping RDF data

 RDF triple

o object, predicate and subject

 RDFS

o RDF Schema

o semantic extension of RDF

o provides mechanisms for describing groups of related resources and the
relationships between these resources

o operates with domains and ranges of properties

o http://www.cambridgesemantics.com/semantic-university/rdfs-introduction

 RDFS/OWL

o http://www.cambridgesemantics.com/semantic-university/rdfs-vs-owl

 relation label/predicate

o predicate assigned to particular binary relation between two NE-columns

 relations discovery and creation

o identifies binary relations between NE-columns

o alternatively, in the case of one NE-column and a literal column and given that the
NE-column is annotated by a specific concept, identifies a property of that concept
that could explain the data literals

 result preview

o limited (probably to predefined number of processed rows) view of the result
computed by the algorithm

o user may be able to provide feedback based on the preview

o Odalic allows to limit the number of processed rows in the task configuration

 Semantic Table Interpretation

o name of the problem that TableMiner+ and consequently Odalic try to solve

 SPARQL

 74

http://www.cambridgesemantics.com/semantic-university/rdfs-vs-owl
http://www.cambridgesemantics.com/semantic-university/rdfs-introduction

o semantic query language

o able to retrieve and manipulate data RDF

 SPARQL endpoint

o a service accepting and returning result of SPARQL queries

 staged file

o uploaded file (either by direct upload or providing a link to a remote one) destined
to be processed by the core algorithm

 subject column

o assumed to exist in every processed table

o exactly one per table (unless statistical data processing is selected)

 suggested class/concept

o the class which was suggested by the algorithm as being one of the possible classes

 suggested winning class/concept

o the class which was suggested by the algorithm as being the best for the given
column

 TableMiner+

o core files predecessor and the base of extensions

 tabular data

o abstract data loaded from provided CSV

 task

o a unit of processing

o defined by a input content (uploaded file) and task configuration

o has a defined state and transition between them

o from the application's point of view, each task is a unique one, even though they can
be defined by the same input constraints, configurations and input files

 task configuration

o set of options allowing to run the task without any further input apart from the
actual file

o includes delimiters, knowledge-bases used, input specification,...

 transformation

o see task

 75

 Turtle

o terse encoding format of RDF triples

 UnifiedViews pipeline

o a set of UV DPU instances connected

 UnifiedViews

o integration tool for linked data

o http://unifiedviews.eu

o https://www.semantic-web.at/unifiedviews

 UnifiedViews DPU

o processing unit in the UnifiedViews pipeline

o provided as a plugin (programmable)

o examples: download, export, SPARQL query,...

 URI

o used in context of the Linked Data to identify entitites

 user

o someone who is able to log in to the running Odalic instance

o can stage files, create and run tasks, stop them, run again

o can choose from available knowledge bases to apply to particular task

 WikiData

o one of the existing knowledge bases

o https://www.wikidata.org/

 YAGO

o one of the existing vocabularies

o http://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/

 76

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.semantic-web.at/unifiedviews
http://unifiedviews.eu/

7 INSTALLATION GUIDES

Odalic platform consists of three main components: the server application (Odalic Semantic
Table Interpretation), the web client (Odalic UI), and finally the Odalic UnifiedViews plugin.
Both the web client and the plugin require a running server to work properly.

8 Server installation

8.1.1 Prerequisites
 at least 4 GB RAM

 Java Runtime Environment version 8+

 Apache Tomcat servlet container version 8+

 Apache Maven 3 (to build and install from the source files)

 running SMTP server (optimally allowing secure communication) in order to send
confirmation e-mails (optional)

The server is platform independent and runs on any major operating system supporting Java
Runtime Environment.

8.1.2 Deployment
There are basically two ways to install the server application: the user can either use a
prepared web archive (WAR) from the the installation disc, or compile the server web archive
file from the provided source files. In both cases the produced WAR file is to be deployed in a
running Apache Tomcat instance.

Apart from the web archive, the server also needs access to a separate working directory
{sti.home} with subdirectories config and resources. Its default version can be also obtained
from the root of server source repository (files and directories other than config and
resources are meant to build the project and are not needed in the working directory) or
copied directly from the installation disc.

The Java Virtual Machine running the Tomcat itself has to be started with a system property
cz.cuni.mff.xrg.odalic.sti set to a path leading to the main configuration file, e.g.:
 -Dcz.cuni.mff.xrg.odalic.sti={sti.home}/config/sti.properties

 77

https://github.com/odalic/sti
https://en.wikipedia.org/wiki/WAR_(file_format)
https://maven.apache.org/
http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/

where the {sti.home}/config/sti.properties is a location of the main configuration
file.
The details of configuration are described in section Configuration, the minimum
needed settings are the following (located in the main configuration file
config/sti.properties):
 sti.home - absolute path to the root working directory {sti.home}.
 cz.cuni.mff.xrg.odalic.users.admin.email - default (admin) user email (used as

login)
 cz.cuni.mff.xrg.odalic.users.admin.password - default (admin) user password (can

be changed later using the API)
 cz.cuni.mff.xrg.odalic.db.file - absolute path to a file (which will be created

if not existing yet) keeping the state of the server

In the config/websearch.properties, set the authorization token at bing.key to the Bing Web
Search service, which can be obtained at https://azure.microsoft.com/cs-cz/services/cognitive-
services/search/.

Apart from these every used knowledge base (the source of Linked Data resources) has to be
configured separately. More in Configuration.

8.1.3 Building from source files
1. Checkout the sources and accompanying resource from Git repository at

https://github.com/odalic/sti or copy them from the installation disc.

2. Install the libraries in the lib directory by running the mvninstall.bat in the source files
root directory (or in case of other OSs than Windows: running the few mvn commands
present there manually), as these are not present in any public Maven repository.

3. Run mvn install in the root directory, all the sub-projects will be installed one by one and
the produced .war will be placed in odalic/target subdirectory.

4. Copy the subdirectories config and resources (only these are needed during runtime) at a
desired location and make the necessary changes in the main configuration file
sti.properties, located in the config sub-directory and follow the rest of Deployment
section.

8.1.3.1 Building Javadoc documentation

The Javadoc documentation building is supported only for the odalic module of the server. To
do that, navigate to source files repository subdirectory odalic and run mvn javadoc:javadoc
to build the Javadoc files hirararchy in odalic/target/site or mvn javadoc:jar to generate a
JAR packed Javadoc in the target. In any case, the installation disc already contains pre-
generated Javadoc.

 78

https://github.com/odalic/sti
https://azure.microsoft.com/cs-cz/services/cognitive-services/search/
https://azure.microsoft.com/cs-cz/services/cognitive-services/search/

8.1.4 Security
While the application provides means to secure privileged operations according to JWT
standard (JSON Web Tokens, more in Authentication and authorization), the requests exchanged
between a client and the server are still vulnerable to eavesdropping and/or tampering. To
prevent man-in-the-middle attack, we recommend using Transport Layer Security (TLS)
protocol as a way of communicating with the server.

The server needs to be configured individually. If you are using Apache Tomcat, we
recommend following the guidelines described on the official site
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html. If you do decide to use the TLS
protcol, a web client should be configured accordingly (see Web client installation section below).

8.1.5 Confirmation e-mails set up
In the default configuration the confirmation e-mails, which require the user to confirm the
sign-up and password-changing process by following a sent hyperlink, are turned off by option
mail.confirmations = false in the sti.properties. If the administrator chooses to the turn
them on by setting the option to true, he or she has to set up the other options starting with
mail. The confirmation e-mails require an already existing running SMTP server that the
application can connect to using the provided mail options such as username, password, host,
SMTP port and used standard socket factory (the one using encrypted connections is in the
defaults, but can be left out when unprotected connection is used). The installation files
already contain tested configuration using email.cz as example of a common freemail provider
(sans the password and login).

If the mail is not properly configured the sign-up user may not obtain the required
confirmation links, thus preventing them from using the application at all.

9 Web client installation

The web client, being a single page application, works almost "out of the box", if a proper
browser, with HTML5 support and JavaScript enabled, is used. However, to ensure the best
experience, steps mentioned below should be followed:

9.1.1 Setting up a web server for the web client
The web client should reside in a web server of your choice. The server API in the default
setting allows to make cross-origin requests. In order to mitigate the risk of exploitation or in
case of any troubles concerning the Same-origin policy protection, modify the appropriate

 79

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://jwt.io/

headers in CorsResponseFilter.java from the server source, according to the location of your
client instance and recompile the server. This is a good place though to remind you NOT to use
or rely on Odalic in situations when your money and life would depend on it!

9.1.2 Configuring the sign-up and password-reset confirmation
address on the server

Specified in detail in Configuration section, the following properties need to be correctly
configured in the main configuration file, sti.properties, if you want to use the default web
client application to respond to the confirmation URLs:

 cz.cuni.mff.xrg.odalic.users.signup.url - URL of the sign-up confirmation link (received
by a user on a provided e-mail address during sign-up process)

 cz.cuni.mff.xrg.odalic.users.reset.url - URL of the password-reset confirmation link
(received by a user on his/her previously registered e-mail address)

In case you are using the default web application, different web client's screens are accessible
by visiting URL .../index.html#/screenname, screenname being name of the screen visited,
and index.html being entry point of the web client application.

The token received for sign-up confirmation is processed at .../index.html#/signup/token,
while the token for password-reset is handled at .../index.html#/chngpasswd/token (token
being the actual token). Therefore an exemplary relevant fragment of the configuration may
look like this (we assume the web client is accessible at URL http://localhost:8080/, or, more
specifically, at http://localhost:8080/index.html):

URL format for a sing-up confirmation.
cz.cuni.mff.xrg.odalic.users.signup.url=http://localhost:8080/index
.html#/signup/%s
URL format for a password setting confirmation.
cz.cuni.mff.xrg.odalic.users.reset.url=http://localhost:8080/index.
html#/chngpasswd/%s

Naturally if you roll your own application based on the Odalic server, you are free to provide
entirely different formatting strings for the URLs (as long as they are valid and contain the
place-holder %s to place the generated token in).

9.1.3 Configuring address of the server in the client
Assume the ./odalic-ui/ is a path of the folder the web client application is located at.

 80

http://localhost:8181/odalic-ui/index.html#/signup/%25s
http://localhost:8181/odalic-ui/index.html#/signup/%25s

Open ./odalic-ui/config.txt file in a text editor. Locate the following piece of code:

[server]
address=http://localhost:8080/odalic/

Replace it with the following lines of code:

[server]
address=ActualServerAddress

Where ActualServerAddress is the actual server address, for example http://localhost:8080/.

Note that if the server uses TLS protocol as a way of securing communication with the client,
https:// should be used instead of http://.

9.1.4 Installing LodLive application component
The web client uses optional LodLive application component as its RDF resource browser for
supported knowledge bases.

1. Let's assume the ./odalic/odalic-ui/ is a path of the folder the web client application is
located at.

2. Navigate to ./odalic/ folder.

3. Copy the LodLive directory from the installation disc or checked-out from the repository
hosting the version modified to work with Odalic UI and paste it in ./odalic/ folder.

9.1.5 Supported browsers
The web client can be accessed using any of the popular internet browsers with HTML5
support. Additionally, it is necessary for the browser to support SVG elements.

Some of the supported browsers are:

 Microsoft® Internet Explorer 11

 Microsoft® Edge 14 (and newer)

 Mozilla Firefox 50 (and newer)

 Google® Chrome 49 (and newer)

 81

https://www.w3.org/Graphics/SVG/
https://github.com/odalic/LodLive
https://github.com/odalic/LodLive
http://localhost:8080/

10 Plugin installation

10.1.1 Deployment
As described in Dealing with OSGi dependency issues when DPU is imported, UnifiedViews
plugins are packed as OSGi bundles and as such they contain their dependences in embedded
JARs or declare them in their manifest. In the latter case it is the user's obligation to make
them available to the chosen OSGi container. Apart from UnifiedViews version accepting
plugins of version 2.1.7, the Odalic plugin requires the following:

 jersey-all 2.22.2 (http://central.maven.org/maven2/com/eclipsesource/jaxrs/jersey-
all/2.22.2/jersey-all-2.22.2.jar)

 jackson-core 2.8.6 (http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-
core/2.8.6/jackson-core-2.8.6.jar)

 jackson-databind 2.8.6 (
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-
databind/2.8.6/jackson-databind-2.8.6.jar)

 jackson-annotations 2.8.6 (
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-
annotations/2.8.6/jackson-annotations-2.8.6.jar)

Copy them from the installation disc (or download them from the URLs) to lib sub-directory at
the path specified with key module.path in the UnifiedViews frontend configuration.

Follow the instructions to create DPU Template at DPU Template Creation, where the uploaded
file will be the t-odalic-{version}.jar from the installation disc or the one built from the
source files as described in the following section. To set up the template, follow the
instructions in the plugin user manual.

10.1.2 Building from source files
1. Checkout the sources from Git repository at https://github.com/odalic/odalic-uv-plugin or

copy them from the installation disc.

2. Run mvn package in the t-odalic directory and the produced t-odalic-{version}.jar
OSGi plugin bundle will be placed in t-odalic/target directory.

 82

https://github.com/odalic/odalic-uv-plugin
https://grips.semantic-web.at/display/UDDOC/DPU+Template+Creation
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-annotations/2.8.6/jackson-annotations-2.8.6.jar
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-annotations/2.8.6/jackson-annotations-2.8.6.jar
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-databind/2.8.6/jackson-databind-2.8.6.jar
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-databind/2.8.6/jackson-databind-2.8.6.jar
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-core/2.8.6/jackson-core-2.8.6.jar
http://central.maven.org/maven2/com/fasterxml/jackson/core/jackson-core/2.8.6/jackson-core-2.8.6.jar
http://central.maven.org/maven2/com/eclipsesource/jaxrs/jersey-all/2.22.2/jersey-all-2.22.2.jar
http://central.maven.org/maven2/com/eclipsesource/jaxrs/jersey-all/2.22.2/jersey-all-2.22.2.jar
https://github.com/UnifiedViews/Core/releases
https://github.com/UnifiedViews/Core/releases
https://grips.semantic-web.at/display/UDDOC/Introduction
https://grips.semantic-web.at/display/UDDOC/Dealing+with+OSGi+dependency+issues+when+DPU+is+imported

11 Virtuoso installation

At least one of the knowledge bases, that are made accessible to Odalic Semantic Table
Interpretation server through the associated proxies and their configuration, must be
modifiable by the user. For most of the publicly accessible bases this is not the case for
obvious reasons. Therefore it might be necessary for the user to establish its own knowledge
base by running own RDF store. Probably the most popular one is Virtuoso.

11.1.1 Installation
Detailed instructions for the installation and setting-up the Virtuoso (for Windows) can be
found at
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSUsageWindows#Getting
%20Started%20with%20the%20VOS%20Binary%20Distribution%20for%20Windows. The most
important points are the following:

1. Download pre-compiled binaries (in an archive) from
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload#Pre-built
%20binaries%20for%20Windows.

2. Unpack the archive to a folder of your choice.

3. Set a system environmental variable VIRTUOSO_HOME to the absolute path of the folder you
unpacked the archive.

4. Add the following values to the PATH environmental variable: "%VIRTUOSO_HOME%/bin" and
"VIRTUOSO_HOME%/lib" (usually separated by a semicolon ";").

5. The configuration files and Virtuoso database are now located in directory
"%VIRTUOSO_HOME%/database".

6. Set up Virtuoso service with the following command: virtuoso-t +service create
+instance "New Instance Name" +configfile virtuoso.ini.

7. If you do intend to use several instances of Virtuoso (e.g. one for DBPedia and another one
for a base of different kind, e.g. Wikidata), clone folder from "%VIRTUOSO_HOME%/database" and
set up a Virtuoso service also for the newly cloned configuration file.

8. If you move a folder with configuration files out of its original destination, you have to
correct all relative paths in the file virtuoso.ini.

 83

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload#Pre-built%20binaries%20for%20Windows
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSDownload#Pre-built%20binaries%20for%20Windows
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSUsageWindows#Getting%20Started%20with%20the%20VOS%20Binary%20Distribution%20for%20Windows
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSUsageWindows#Getting%20Started%20with%20the%20VOS%20Binary%20Distribution%20for%20Windows
https://virtuoso.openlinksw.com/
https://en.wikipedia.org/wiki/Triplestore

9. Configuration parameters NumberOfBuffers and MaxDirtyBuffers should be set according
to your available computer memory (follow the instructions in the configuration file).

10. The port number assigned to Virtuoso may be changed as well. Note that if you intend to
use several instances of Virtuoso, this is an obligatory step.

11. Once a Virtuoso service is running, a web interface may be opened. (By default it is
accessible at http://localhost:8890/conductor).

12. A VOS ODBC Driver should be installed as well. Download the driver and follow the
instructions at http://virtuoso.openlinksw.com/download/.

11.1.2 Datasets import
Instructions on how to import datasets to Virtuoso may be found at
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtBulkRDFLoader. DBpedia
datasets can be found at http://wiki.dbpedia.org/Downloads2015-10. Wikidata datasets can be
found at https://www.wikidata.org/wiki/Wikidata:Database_download#RDF_dumps. Note that
the import may take a significant amount of time, if a large knowledge base is used.

12 Reducing the space consumption of
DBpedia

If everything (the whole DBpedia dump) is loaded to Virtuoso, it requires too much space. In
order too alleviate from this burden, you can select only an essential subset of the datasets
from the dump. From our experience, when you start from
http://wiki.dbpedia.org/Downloads2015-10

dump, than the datasets most relevant to Odalic Semantic Table Interpreation are the
following:

 ontology

 homepages

 instance types

 labels

 mappingbased literals

 mappingbased objects

 short abstracts

 84

http://wiki.dbpedia.org/services-resources/documentation/datasets#shortabstracts
http://wiki.dbpedia.org/services-resources/documentation/datasets#mappingbasedobjects
http://wiki.dbpedia.org/services-resources/documentation/datasets#mappingbasedliterals
http://wiki.dbpedia.org/services-resources/documentation/datasets#labels
http://wiki.dbpedia.org/services-resources/documentation/datasets#instancetypes
http://wiki.dbpedia.org/services-resources/documentation/datasets#homepages
http://wiki.dbpedia.org/Downloads2015-10#ontology
http://wiki.dbpedia.org/Downloads2015-10
https://www.wikidata.org/wiki/Wikidata:Database_download#RDF_dumps
http://wiki.dbpedia.org/Downloads2015-10
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtBulkRDFLoader
http://virtuoso.openlinksw.com/download/
http://localhost:8890/conductor

 wikipedia links

These are the Virtuoso iSQL commands you may use to load the datasets to the Virtuoso store:

ld_dir ('d:/KBs/DBpediaCommon', '*.owl', 'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'homepages*.ttl',
'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'instance_types*.ttl',
'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'labels*.ttl', 'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'mappingbased_literals*.ttl',
'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'mappingbased_objects*.ttl',
'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'short_abstracts*.ttl',
'http://dbpedia.org');
ld_dir ('d:/KBs/DBpediaEN', 'wikipedia_links*.ttl',
'http://dbpedia.org');

This must be confirmed by the iSQL command starting the import:

rdf_loader_run();

13 Docker image

The Odalic Docker image is available on GitHub: https://github.com/odalic/odalic-docker.

13.1.1 Docker setup
You can find the Docker installation files for all major platforms here:
https://www.docker.com/community-edition.

Please note, that Docker for Windows requires Hyper-V, so it cannot run natively on Windows
10 Home or older Windows versions. You have to use the Docker Tools instead:
https://www.docker.com/products/docker-toolbox.

13.1.2 Running Odalic
Odalic requires a working SPARQL endpoint with update rights. An easy way to setup such
endpoint is to run the virtuoso Docker image:

docker run --name localKB -p 8890:8890 -e SPARQL_UPDATE=true -e

 85

https://www.docker.com/products/docker-toolbox
https://www.docker.com/community-edition
https://github.com/odalic/odalic-docker
http://wiki.dbpedia.org/services-resources/documentation/datasets#wikipedialinks

DEFAULT_GRAPH=http://odalic.eu -d tenforce/virtuoso

To build the Odalic Docker image, execute:

docker build --tag odalic:latest https://github.com/odalic/odalic-
docker.git

If you do not have git, you have to download the dockerfile and run:

docker build --tag odalic:latest .

The following Docker command will run the prepared Docker image:

docker run -ti --name odalic --link localKB -p 8080:8080
odalic:latest

The Odalic UI can be now accessed from your favourite browser on localhost:8080/odalic-ui.

13.1.3 Accessing the virtual machine
If you want to access the odalic installation files and configuration, you have to run the Odalic
image in a detached mode:

docker run -d --name odalic --link localKB -p 8080:8080
odalic:latest

You can then start the Linux command line by executing:

docker exec -ti odalic sh

13.1.4 Starting and stopping the Odalic container
Running a Docker image will create a Docker container. You can start/stop the created
container like this:

Code Block 3 Start

docker start odalic

 86

http://localhost:8080/odalic-ui

Code Block 4 Stop

docker stop odalic

13.1.5 Changing ports
You can generally change a docker container port by changing the "-p" parameter:

-p 8080:[your local port]

You can freely change the local SPARQL endpoint port. It is only used when you access it
directly over: http://localhost:8890/sparql.

To change the Odalic port, you have to also access the Odalic virtual machine and edit
following files:

/usr/local/tomcat/webapps/odalic-ui/config.txt
/usr/local/odalic/config/sti.properties

For more information please consult the Odalic documentation.

13.1.6 Updating Odalic
If you want to update your Docker container to a new Odalic version, you have to first stop the
existing container. Then remove it by executing:

docker container rm -f odalic

After the container is removed, you can update the image by running the build again:

docker build --tag odalic:latest https://github.com/odalic/odalic-
docker.git

13.1.7 Advanced Docker configuration
For more advanced commands please refer to the Docker documentation
https://docs.docker.com/engine/reference/commandline/cli.

 87

https://docs.docker.com/engine/reference/commandline/cli
http://localhost:8890/sparql

14 DEVELOPER
DOCUMENTATION

 Architecture

 Server

o Modules

o Core algorithm description

o REST API implementation

o Authentication and authorization

o Input files management and parsing

o Tasks executions

o User feedback

o Result exports

 Annotations (JSON)

 Extended CSV

 RDF (triples)

o Data cube

o Configurations export and import

o Persisting server state

o Configuration

 Main Settings

 KB Proxy Settings

 KB Structure Settings (Groups)

 Websearch Settings

o RDF manipulation

 UI

 UnifiedViews DPU implementation

 Possible extensions and improvements

 88

 Project history

15 Architecture

Odalic architecture follows the basic division into the three components: server (Odalic
Semantic Table Interpreation), web client (Odalic UI) and the plugin (Odalic UnifiedViews
Plugn). Both the client and server, and the plugin DPU instances and server communicate over
the established server REST API. Users can either use the web client to put CSV files to process,
or in case they require the Odalic to integrate with other UnifiedViews DPUs or use some of
the other UnifiedViews features, the plugin.

15.1.1 Odalic UI
Odalic UI is a single-page web application (based on AngularJS), which is running entirely in the
client's browser. It uses the server REST API to let the user register, log in, send or set up files,
run the processing on them, provide feedback and finally export the results or the used
configuration.

In order to get notified about the change of execution state, the client actively polls the server.

 89

15.1.2 Odalic Semantic Table Interpreation
The server is deployed in a servlet container (tested on Apache Tomcat). It runs many services,
of note is the one that actually does the processing of the input files. It spawns a new thread
for every set up task and passes its configuration or a collected feedback (in case it is a re-run)
to algorithm which is a modified version of the TableMiner+ algorithm by Ziqi Zhang. The
server responds to state polling requests, but also allows to ask for the result upfront and
blocks the response to the request until the result is available.

Interesting implementation details of this and other services are described throughout the
developer documentation.

15.1.2.1 Knowledge bases

Knowledge bases are hosted in a separate dedicated one or more RDF stores (e.g. Virtuoso).
They can be accessed remotely, some of them are available to the general public. Access to
them can be configured in .properties files stored in the config sub-directory of the working
directory, which the server loads at start-up and provides to every created user. The bases can
be further managed, new added and configured through the API and the UI. They are mainly
used by the processing algorithm and services facilitating user feedback.

Odalic requires presence of at least one knowledge base that is modifiable, to be selected as
the primary one. This base is used to store the user-defined resources and also takes
precedence in case of conflict between partial results from the bases used in processing. The
Docker installation comes with one such base so the user does not need to configure his or
her own if he or she does not want to. This one can remain empty, only to store the proposed
resources.

15.1.2.2 Server state

The server uses a MapDB file storage to keep the state of the server, which consists of the
registered and logged users, their files, file and task configurations and the feedback users
provided. The storage also caches execution results, so the users do not have to compute
them again in case of server restart or crash, as they can be relatively expensive to do, from
time and network traffic perspective.

15.1.3 Odalic DPU
Odalic DPUs work within the boundaries of UnifiedViews architecture, from the Odalic
platform perspective they behave as another REST API client. They even use the same
authentication mechanism as the Odalic UI, where the security token is saved in the DPU
template and then used in all the template instances.

 90

https://grips.semantic-web.at/display/UDDOC/Introduction
http://www.mapdb.org/
https://virtuoso.openlinksw.com/

16 Server

 Modules

 Core algorithm description

 REST API implementation

 Authentication and authorization

 Input files management and parsing

 Tasks executions

 User feedback

 Result exports

o Annotations (JSON)

o Extended CSV

o RDF (triples)

 Data cube

 Configurations export and import

 Persisting server state

 Configuration

o Main Settings

o KB Proxy Settings

o KB Structure Settings (Groups)

o Websearch Settings

 RDF manipulation

16.1.1 Modules
All modules are located in the sti repository of the Odalic project.

 odalic

o This module contains almost all the extensions added to the original STI
TableMiner+ under this project, apart from those that modify the algorithm or work
with knowledge bases and web search.

 91

https://github.com/ziqizhang/sti
https://github.com/ziqizhang/sti
https://github.com/odalic/sti

o It is divided into packages, which detailed description is provided in relevant parts of
the developer documentation. They are the following (some low-level packages
were left-out from this overview for sake of clarity, they are described in the
Javadoc):

 api (available server APIs)

 rdf (RDF input and outputs - only task and bases configuration so far)

 rest (REST API classes, all built atop the standard Jersey server library)

 bases (list of working knowledge bases; now a full-fledged runtime bases
management is supported)

 entities (searching of available existing and proposing of new, custom RDF
resources)

 feedback (model classes used to describe the feedback user provides to the
algorithm)

 files (input files management and format configuration)

 input (parsing of the input files and tied domain classes)

 outputs (result export formats and facilitating classes)

 annotatedtable (JSON-formatted annotations complementary to the
extended CSVs)

 csvexport (extended CSV files, see
https://www.w3.org/2013/csvw/wiki/Main_Page for the standard
draft)

 rdfexport (RDF serialization formats)

 tasks (tasks management)

 annotations (classes representing the table annotations produced by
the processing algorithm)

 configurations (task configuration classes and service - one of the
factors, next to the input and state of used knowledge bases, affecting
the processing result)

 executions (execution environment for the tasks, directly employing
the modified TableMiner+ algorithm)

 feedbacks (means to provide a feedback to the algorithm)

 results (processing result representation and conversion from and to
the format used by the algorithm)

 92

https://www.w3.org/2013/csvw/wiki/Main_Page
https://jersey.java.net/

 users (user management, authorization and authentication support)

 util (utilities applicable across the whole extension project)

 configuration (configuration reading utilities)

 hash (password hashing)

 mail (e-mails delivery)

 storage (keeping of the server state after shut-down or restart)

 sti-common-utils

o Original STI module.

o This module contains utility classes (cache interface, string and serialization utilities)
used by more than one original sti module.

 sti-kbproxy (interfaces to knowledge base proxies and factory methods creating them
from the configuration files or configuration provided via API)

o model (model classes of the objects kept in the bases)

o sparql (proxies to bases accessible through SPARQL endpoints)

 sti-main

o Original STI module, stripped of non-essential parts (such as files batch processing,
baseline algorithms, HTML parsing,...), cleaned-up and extended with code to accept
user feedback and other improvements.

o core

 algorithm (the modified TableMiner+ algorithm)

 extension (feedback classes mirrored from the odalic module to avoid
circular dependence, their instances are fed to the algorithm, encapsulated
in the Constraint instance)

 model (internal annotations model of the algorithm, these classes are
generally mutable and not fit to use outside of the module scope)

 scorer (score computation for the candidates to annotations)

 subjectcol (subject column, a.k.a "primary key" column discovery)

o nlp (NLP processing tools)

o util

 sti-websearch

o Original STI module, but heavily rewritten in order to accommodate the new version
of the Bing API.

 93

o Contains a simple web client querying the public API of the Bing web search. Its
results are used to compute scores of the candidates to annotations.

16.1.2 Core algorithm description

16.1.2.1 Phases

The main goal of the core algorithm is to take the the tabular input data, interpret it as best as
it can using selected knowledge bases, and return an annotated table. This annotation process
has several distinct phases:

1. Subject Column Detection
The subject column candidate is determined from both the column headers and cell
values. The values in the subject column then represent main entities, values from other
columns are interpreted as properties of these main entities.

2. Cells Disambiguation
Individual cell values are searched in available knowledge bases. Search results are then
scored and their types and properties are loaded for further processing. The result of this
phase is a list of candidates for every table cell.

3. Columns Classification
Classification determines candidates for columns based on types of disambiguated column
cells. The desired result is to pick a class that is a type for majority of the column cells, but
also is not too broad (e.g. when classifying a column of writers, we want to receive
dbpedia:Writer and not dbpedia:Thing).

4. Relations Enumeration
Relations between cells and columns are determined from properties of disambiguated
cells.

A more in-depth description of the original algorithm, upon which is the core algorithm base
on, can be found in the paper http://www.semantic-web-journal.net/content/effective-and-
efficient-semantic-table-interpretation-using-tableminer-0 . Its implementation of the
algorithm is spread into several modules.

 sti-main
The main part of the algorithm. Contains the implementation of the above mentioned
steps. The original TableMiner+ contained many experimental interpreter
implementations. In the Odalic, most of them were removed in favor of the TMP
implementation. The reason for this is, that each of them would have to be extended by
new features like user feedback, which would go beyond the scope of our project. Also
there are mostly proven inferior by the paper.

 94

http://www.semantic-web-journal.net/content/effective-and-efficient-semantic-table-interpretation-using-tableminer-0
http://www.semantic-web-journal.net/content/effective-and-efficient-semantic-table-interpretation-using-tableminer-0

 sti-kbproxy
Provides an abstracted interface for communication with various KBs. Used both by the
core algorithm and Odalic server.

 sti-websearch
Handles scoring of results based on web search.

16.1.2.2 Main Module

The entry point for the algorithm is the
uk.ac.shef.dcs.sti.core.algorithm.tmp.TMPOdalicInterpreter class, to successfully initialize
the interpreter it is necessary to obtain instances of following classes.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.TCellDisambiguator
Handles cell disambiguation.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.TColumnClassifier
Handles columns classification.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.sampler.TContentCellRanker
Provides ranking of rows based on number of non-empty cells. Currently used
implementation is uk.ac.shef.dcs.sti.core.algorithm.tmp.sampler.OSPD_nonEmpty.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.LEARNING
Performs preliminary disambiguation and classification on a sample of rows.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.UPDATE
Updates results scores at the of phase 3, after the classification is done.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.TColumnColumnRelationEnumerator
Discovers relations between columns and cells.

 uk.ac.shef.dcs.sti.core.algorithm.tmp.LiteralColumnTagger
Used at the end of phase 4. Annotates any not yet annotated columns as data properties
and tries to find relations with the subject column.

 uk.ac.shef.dcs.kbproxy
Provides access to the underlying knowledge bases.

16.1.2.3 KB Proxy Module

The KB Proxy module is used by both Main module and Odalic server module to search
configured KBs. The uk.ac.shef.dcs.kbproxy.KBProxy instances are created from Odalic
configuration files using the uk.ac.shef.dcs.kbproxy.KBProxyFactory. The base class has
built in Solr cache and provides methods for saving search results to the cache and retrieving
them from the cache. Each KBproxy has it's own solr cache defined by the KB name. There are
currently two implementations of the uk.ac.shef.dcs.kbproxy.KBProxy.

 95

 uk.ac.shef.dcs.kbproxy.sparql.SPARQLProxy
Generic implementation of KB Search of SPARQL KBs.

 uk.ac.shef.dcs.kbproxy.sparql.DBpediaProxy
Specific implementation of KB Search for DBpedia type of KBs. Extends the SPARQLProxy
and currently has only modified label retrieval methods.

The original TableMiner+ used proxy class for Freebase. This was replaced by a more generic
SPARQL proxy. The Freebase is no longer supported, because it's original public API is no
longer available.The uk.ac.shef.dcs.kbproxy.KBProxy has four main groups of public
methods.

Core algorithm search

These methods are used by the core algorithm, they do not throw any exceptions. To
implement them, it is necessary to override the "*Internal" methods with same names. Any
potential errors are caught and returned as warning for the user.

 findAttributesOfClazz
Returns a collection of attributes of the selected class.

 findAttributesOfEntities
Returns a collection of attributes of the selected entity.

 findAttributesOfProperty
Returns a collection of attributes of the selected property.

 findEntityCandidates
Method used for the preliminary disambiguation or for main disambiguation when the
preliminary disambiguation returned no types. Searches for candidates in the KB based on
their label. The entities are returned with complete information about attributes and types.

 findEntityCandidatesOfTypes
Same as findEntityCandidates with the difference that results are only of certain types.
Used in disambiguation when preliminary disambiguation returned some candidate types.

 findEntityClazzSimilarity
Evaluates similarity between two classes.

 findGranularityOfClazz
Evaluates granularity of a class.

 loadEntity
Loads single entity from the KB with complete information about attributes and types.

User initiated Search

These methods are used by the Odalic server in the user search dialog.

 96

 findPredicateByFulltext
Returns candidate entities (predicates) from the KB based on supplied string value, domain
and range.

 findResourceByFulltext
Returns candidate entities (resources) from the KB based on supplied string value.

 findClassByFulltext
Returns candidate entities (classes) from the KB based on supplied string value.

Proposals

 isInsertSupported
Information about whether the knowledge base supports inserting new concepts.

 insertClass
Inserts a new class into the knowledge base.

 insertConcept
Inserts a new concept into the knowledge base.

 insertProperty
Inserts a new property type into the knowledge base.

Export

 getPropertyDomains
Returns domain of the given resource.

 getPropertyRanges
Returns range properties of the given resource.

SPARQL Proxy

The SPARQL Proxy implements the above mentioned methods using Jena to generate the
required SPARQL SELECT, INSERT and ASK requests. The original TableMiner+ created SPARQL
queries by string concatenation, the current approach makes use of Jena "bulder" classes and
is both more readable and less error prone. The fulltext search is implemented by querying
the DBpedia fulltext catalogue through the "bif:contains" predicate. If the fulltext catalogue is
not available, the proxy falls back on regex based filters, that are somewhat slower.

In user search, it is important to be able to return any resources found during the
disambiguation. This is not always possible, because some results, like types from column
classification, may not have labels. It is also important to be able to find any recently proposed
resources. For this reason, the user initiated search always performs both exact match query
and fulltext query. The exact match query usually returns less results, but can find recently

 97

https://jena.apache.org/

proposed resources, that have not yet been added to the fulltext catalogue of the knowledge
base.

The disambiguation of cells usually creates following queries.

1. Exact match query by label

Code Block 5 Example

PREFIX geonames: <http://www.geonames.org/ontology#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
... # Other prefixes left out.

SELECT DISTINCT ?subject
WHERE
 { { SELECT DISTINCT ?subject
 WHERE
 { { ?subject foaf:name "Gardens of the Moon"@en }
 UNION
 { ?subject dbpprop:fullname "Gardens of the
Moon"@en }
 UNION
 { ?subject rdfs:label "Gardens of the Moon"@en }
 UNION
 { ?subject dbpprop:name "Gardens of the
Moon"@en }
 UNION
 { ?subject dbpedia-owl:originalTitle "Gardens of
the Moon"@en }
 }
 }
 ?subject rdf:type ?class
 }

2. Fulltext query by label

 98

Code Block 6 Example

Prefixes left out.

SELECT DISTINCT ?subject ?object
WHERE
 { { SELECT DISTINCT ?subject ?object
 WHERE
 { { ?subject foaf:name ?object .
 ?object <bif:contains> "\"Gardens\" AND \"of\"
AND \"the\" AND \"Moon\""
 }
 UNION
 { ?subject dbpprop:fullname ?object .
 ?object <bif:contains> "\"Gardens\"
AND \"of\" AND \"the\" AND \"Moon\""
 }
 UNION
 { ?subject rdfs:label ?object .
 ?object <bif:contains> "\"Gardens\" AND \"of\"
AND \"the\" AND \"Moon\""
 }
 UNION
 { ?subject dbpprop:name ?object .
 ?object <bif:contains> "\"Gardens\" AND \"of\"
AND \"the\" AND \"Moon\""
 }
 UNION
 { ?subject dbpedia-owl:originalTitle ?object .
 ?object <bif:contains> "\"Gardens\"
AND \"of\" AND \"the\" AND \"Moon\""
 }
 }
 }
 ?subject rdf:type ?class
 }

3. Query attributes for every result

Code Block 7 Example

Prefixes left out.

SELECT DISTINCT ?predicate ?object
WHERE
 { dbpedia:Gardens_of_the_Moon
 ?predicate ?object
 }

4. Query label for every attribute

 99

Code Block 8 Example

Prefixes left out.

SELECT DISTINCT ?object
WHERE
 { { dbpedia-owl:Book
 foaf:name ?object
 }
 UNION
 { dbpedia-owl:Book
 dbpprop:fullname ?object
 }
 UNION
 { dbpedia-owl:Book
 rdfs:label ?object
 }
 UNION
 { dbpedia-owl:Book
 dbpprop:name ?object
 }
 UNION
 { dbpedia-owl:Book
 dbpedia-owl:originalTitle ?object
 }
 }

16.1.2.4 Websearch Module

Provides functionality for searching concepts of the web. Used for scoring results. Formerly
implemented using Bing Web Search API, now renamed to Microsoft Cognitive Services.

16.1.3 REST API implementation

16.1.3.1 Mapping

We opt for Jersey to implement the specified REST resources. As the reference JAX-RS
implementation it is well supported, extensible and blends good enough with the Spring
container. Considering that the first client of the API is to be the Odalic UI, AngularJS web
application, choosing JSON as the primary data format was reasonable as well. When choosing
how to map the domain objects to JSON, two opposing concerns emerged:

1. ease of mapping directly the domain objects by marking them with JAXB annotations (work
for JSON too, but even then require certain concessions to the classes design) on one hand,

 100

https://jersey.java.net/

2. and the need to build a robust domain model that would fare well when its objects would
be passed to the algorithm as feedback, or its classes used when adding new functionality.

Although JAXB allows to annotate the class fields and make the constructor private, and there
is no need to make the mapped class to be a true Java Bean, this still does not make its
instances reliable to use within the domain model: fields missing in the original JSON would
still be initialized to null, so even than the domain class would have to validated before use.
And that makes the domain model too fragile from the beginning.

In the end a solution separating the domain classes (used throughout the project code) and
their counterparts (located in cz.cuni.mff.xrg.odalic.api.rest.values), that would be
mapped to JSON, was chosen. Thanks to XmlAdapters most of the domain classes can be
seamlessly converted to the mapped ones and back, and it is even possible to use them in the
method signatures that handle HTTP requests, making the mapping almost invisible to the rest
of the server code. This solution has some drawbacks, mainly It proved to be next to
impossible to inject dependencies from Spring container to XmlAdapters. For example an
XmlAdapter cannot be used to convert from Task JSON value to Task domain object, if you
want to make sure that the file referred by task exists. In this case you have to manually
convert from the cz.cuni.mff.xrg.odalic.api.rest.values.TaskValue to
cz.cuni.mff.xrg.odalic.tasks.Task. in the Jersey resource class, where the file service can
be injected without a problem. On the other hand there are some perks:

 XmlAdapters are resolved recursively on the whole class hierarchy, so if you adapt a
domain class that contains fields pointing to instances of other domain classes, you do not
have to change the type of the fields in the mapped version, their XmlAdapters will be used
automatically.

 The adapters work well alongside custom JSON serializers and de-serializers from jackson-
databind library. This allows to convert fields of complex type, e.g. nested Maps with non-
String keys. This helped to encode a feedback on individual, sparsely distributed table cells
in a relatively compact way (see
cz.cuni.mff.xrg.odalic.api.rest.values.DisambiguationValue and compare with the
output produced, as seen in in the REST API specification examples).

16.1.3.2 Other features

The API implementation relies on other useful Jersey features, such as request and response
filters and exception mappers. The filters are used to set CORS headers, log the requests and
to facilitate authorization and authentication. An exception mapper was used to convert the
exceptions thrown during the course of request processing to JSON messages presented in the
specification. Concerning the overall exception handling strategy, we chose to strictly separate
the API from the underlying services and vowed not to raise web application exceptions in
code that is not aware of being executed in web application. This required responsible
mapping from general exceptions raised by the implementing services to the

 101

https://en.wikipedia.org/wiki/CORS
https://jersey.java.net/documentation/latest/representations.html#d0e6754
https://jersey.java.net/documentation/latest/filters-and-interceptors.html
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-databind
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/adapters/XmlAdapter.html

WebApplicationExceptions, that were in the end turned by the mapper into appropriate HTTP
responses.

16.1.4 Authentication and authorization

16.1.4.1 From a web client perspective

The web client uses Satellizer library (https://github.com/sahat/satellizer) to support server
security demands where the parties agreed on use of tokens adhering to the JWT standard.

Signing up

1. User creates a new account by providing relevant information, such as e-mail, by which his
or her account will be identified.

2. The web client sends a request to the server with the relevant information (e-mail,
password).

3. In case no other account is paired with the provided e-mail address, the server creates the
new account and responds with an affirmative message. The server additionally
asynchronously sends an e-mail to the provided address.

4. The web client informs the user to await an e-mail with additional instructions.

5. The e-mail consists (besides human readable instructions) of a hyperlink leading to a specific
URL, as configured in the previously mentioned config/sti.properties file. For example,
http://localhost:8080/index.html#/signup/<token>, where "<token>" is an actual token
provided by the server.

6. By clicking on the link, the user is redirected to a specific screen on the web client. There,
the application automatically parses the URL and sends a confirmation request to the
server with the token attached.

7. If the token has not expired yet, the server responds with an affirmative message, to which
the client application responds by displaying information to the user, ensuring him or her
the account has been successfully activated, and requesting him or her to log in.

Logging in

1. The user logs in by providing the e-mail address his or her account is now associated with,
and the password.

2. The application sends a request to the server containing the e-mail and the password.

3. If the account information is valid, the server responds with an affirmative message with a
token attached.

 102

https://jwt.io/
https://github.com/sahat/satellizer
http://docs.oracle.com/javaee/7/api/javax/ws/rs/WebApplicationException.html

4. The application saves the token in the user's local storage (by using HTML5 Web Storage API).

5. From now on, each request the application sends is automatically attached with an
authorization header containing the token.

6. If the user logs out, the token is removed from the local storage.

7. A server may respond to a request with a negative message, even if the token is provided
in the authorization header of the request (e.g. when the token is expired). In that case, the
application redirects the user to "log in" screen, where it automatically re-evaluates the
validity of the token (by sending a testing request to the server). If the token is not valid
anymore, the user is automatically logged out and the token removed from the local
storage. The user may log in again.

Because the communication between the web client and the server is still vulnerable to the
"man-in-the-middle" attacks, a usage of TLS/SSL communication protocol is highly
recommended.

Also the confirmation emails can be turned off in the main configuration.

16.1.4.2 From the server perspective

Tokens

Employing JWT tokens to authenticate the client of the REST API has several appealing
properties, such as:

 They can be shared with 3rd parties to enable them to act on behalf of the user without
compromising the actual credentials (e-mail and password combination).

o Such is the case of the Odalic UnifiedViews plugin.

 They can carry useful information which does not have to be remembered by the server,
but still can be relied on.

o But it is good to keep in mind that unless other measures are taken, these pieces of
information are publicly visible!

o For example Odalic server stores the date of expiration in the tokens, which is
checked by the server, without the fear that it has been tampered with.

 Unless they are long-lived enough to endanger the user, the server does not have
remember which tokens were issued.

o Unfortunately the processing of tasks may take a long time, during which the client
polls the server and it would be impractical to negotiate a new token. So the Odalic
server does remember which tokens were issued (their ID is enough). Only then it

 103

https://jwt.io/

can revoke them when needed, which is implemented by letting the user change his
or her password.

 They can be safely shared in a URL, unless they are excessively long, because they are
composed from safe characters.

o This is useful in the case of e-mail confirmation, because the token can be placed in
the link itself.

 They are well supported across languages and platforms.

The server uses the auth0 Java JWT library to issue and verify sign-up and password reset
tokens and the tokens authenticating the source of the API calls. As the available memory is
always limited, only a certain amount of tokens is remembered by the server, when this limit is
reached, the oldest issued token is lost.

Authentication and authorization with Jersey

To secure REST endpoints, the privileged Resource classes or their methods (if higher
granularity is needed) are marked with cz.cuni.mff.xrg.odalic.api.rest.Secured
annotation, which triggers checking code in Authentication request filter. This code calls upon
the cz.cuni.mff.xrg.odalic.users.UserService to match the token received in HTTP
Authorization header with some of the valid issued ones. The Secured annotation also has a
parameter which allows to specify which role the user must have to access the secured
endpoint. This is handled by Authorization request filter which compares the callee's role with
the set of acceptable ones. Should any of these checks fail, an exception is thrown and
mapped to appropriate HTTP response, thus denying the access. So far only two roles are
supported: common users and the administrator. The administrator has all the rights of the
regular users, plus it can access endpoints allowing to list all the users and delete some of
them. Also he or she can act on behalf of another user by providing his or her user ID in the
calls.

Password handling

The password set during the sign-up or reset is never stored. The server only computes a hash
from it and the assigned salt and compares is with a password sent in login credentials. For
this an Scrypt implementation in pure Java was used. It may lack the raw performance, but
does not need to be linked to a C library.

 104

https://github.com/wg/scrypt
https://jersey.java.net/documentation/latest/jaxrs-resources.html
https://github.com/auth0/java-jwt

16.1.5 Input files management and parsing
Odalic server distinguishes between two kinds of input CSV files: local and remote ones. Local
files gets to be uploaded by the user and reside in the server storage. Remote ones are
defined only by their URL. Both kinds share the same structure for meta-data (differing only in
their cached flag), and even the local ones have their URL assigned, which is the same under
which they can be GET from the REST API. The files are parsed only moment before the
execution, so it is possible to get different results if the underlying remote files change or the
parsing format of both the local and remote file is changed by the user. Every input file can be
shared among multiple processing tasks belonging to the same user, therefore it cannot be
deleted as long as at least one task refers to it. The references are kept by the implementing
FileService, where for each referring Task has to be subscribed and unsubscribed upon
deletion.

Parsing is done through Apache Commons CSV library, which is able to detect line separators,
but provides no mean to obtain that information for further use. So detecting code was added
to the parser, because the used line separators are needed in order to export the results in the
form expected by the client. The result of parsing is a model of CSV file represented by
cz.cuni.mff.xrg.odalic.input.Input, consisting of the the list of rows and header (first row).
Odalic assumes the file to be consistent, that means containing equal number of records in all
rows, and raise an exception if this is not the case.

16.1.6 Tasks executions

16.1.6.1 Execution workflow

When the user gives command to execute a processing task, the following happens:

1. Server verifies that execution is not already in process.

o To simplify matters we allow only one execution per task definition. This is only a
slight practical limitation as nothing prevents the user from copying the exact task
definition under another name (via export/import round-trip).

2. The current configuration is retrieved.

3. A snapshot of the the parsed input specified in the configuration is made.

o This prevents possible corruption of the result display in case the formatting of the
original file changes between the start of processing and the result presentation.
This might cause columns mismatch and other undesirable effects.

 105

https://commons.apache.org/csv/

o The parser also automatically detects line separators and remembers them to apply
in outputs.

4. A Runnable instance is created, which does the following:

a. The parsed input is converted to the working table format of the core algorithm.

b. Interpreters associated with the defined knowledge base proxies are provided with
the table and started one by one (although parallel computation is about to be
explored in future releases), each applying the algorithm on the table, constrained
by the optionally provided user feedback from previous runs.

c. Their results are merged into single result which is cached and set as a Future
result, waiting for retrieval by the client or returning immediately if the retrieval call
has already been made.

5. The Runnable instance is submitted to ExecutorService and the returned Future is
associated with the user's ID and task ID, but not before the previously cached result is
purged.

When the command to cancel the task is received, it is passed on the Future. Unfortunately in
the current version it is not possible to actually stop the execution and it always has to go
through even if it does appear stopped the client code. At least until cooperative handling of
thread interruption is introduced to the algorithm code. The problem lies in the Solr caches,
which do not handle the pre-emptive interruptions well and are in the risk of corruption if the
client code does them.

 106

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

16.1.6.2 Execution states

The state of the Future (whether it it is done, and if so, if it is cancelled) and whether there is
even any associated with the task, or a result is cached, determines the possible execution
states of the task. It is the caching in persistent storage, that slightly complicates things against
the memory-only version, because the Futures naturally cannot be serialized, and any
exceptions raised during the task processing even less so. This causes the ERROR state to be

 107

lost upon server restart, which was ultimately deemed an acceptable result, compared with
the effort needed to keep the arbitrary error cause serialized. Naturally the task result is
available only when the execution is in the SUCCESS or WARNING state.

The warnings presented when querying the result from the WARNING state are collected from
minor runtime exceptions that occur throughout the algorithm execution. The motivation for
their introduction was the fact that in the original algorithm version even minor setbacks, like
temporary HTTP connection problems, caused the entire processing to halt, which was
frustrating in cases when the processing took several-hours to repeat.

16.1.6.3 Task processing result

Odalic internal model of table annotations (cz.cuni.mff.xrg.odalic.tasks.results.Result),
presented on the outside by the REST API, is geared towards making the working of the client
easier first, rather than truly reflect any theoretical model. It has the following parts:

 subjectColumnPositions

o mapping of knowledge bases to subject columns

 subject columns (concept similar to a primary key, all the relations lead from
them) are determined through the run of the algorithm for each base in its
own interpreter

 headerAnnotations

o each column gets assigned an RDF class per knowledge base and that implies that
all the cells in the column are its instances

 Actually there are usually multiples candidates, which are ordered according
to their score and left for the user to choose from, if not satisfied with the
default choice.

 cellAnnotations

o A matrix of RDF resources, one per each cell at most, that disambiguate the original
cell content.

 The format of the cell annotations is actually quite similar to those in
headers, as there is not much need to distinguish between them for most
uses.

 columnRelationAnnotations

o RDF properties forming a relation between two columns.

 The domain of the property conforms to the class of the first column, the
range to the second one.

 statisticalAnnotations

 108

https://www.w3.org/TR/rdf-schema/#ch_classes

o They assign set of property to each column per base and a type indicating whether
the column is a measure of dimension of the formed data cube.

o Applies only when a statistical processing was chosen during the task configuration.
This basically means that no relations were formed, and the choice of subject
column was also dropped, because what matters is the final data cube formed
during the export.

 columnProcessingAnnotations

o Explicit information whether the column was declared by the algorithm to contain
named entities (most of the disambiguated content), non-named entities (typically
numerical values) or if the column was ignored by the algorithm (on the user's
request) during the process.

 warnings

o List of warnings in the order as they were written when non-fatal errors occurred
during the processing.

These parts are adapted from the filled by adapting the result representation provided by the
algorithm (uk.ac.shef.dcs.sti.core.model.TAnnotation), which by itself is not suitable to be
passed around, but designed to be modified during the processing.

Annotation structure

Every annotation (for headers, cells, relations,...) has the following structure:

 Map from knowledge bases to ordered set of candidates.

o Every candidate is composed from the actual resources description and score
assigned by the algorithm.

 Resource description has a label and the resource URI (optionally prefixed as
is common in many common representations).

 Map from knowledge bases to the set of chosen candidates.

16.1.7 User feedback
User can provide several kinds of feedback to the core annotation algorithm. All parts are
grouped in the cz.cuni.mff.xrg.odalic.feedbacks.Feedback class. Feedback is a part of Task
configuration. Initially (after the Task creation) the feedback is empty. When the algorithm run
is finished, user can observe the results and adjust the feedback, which will be considered by
algorithm in the next run.

 109

https://www.w3.org/TR/turtle/#prefixed-name

16.1.7.1 Passing the feedback to the algorithm

Before the execution of the core algorithm, Feedback is adapted by the
cz.cuni.mff.xrg.odalic.feedbacks.DefaultFeedbackToConstraintsAdapter (which
implements interface cz.cuni.mff.xrg.odalic.feedbacks.FeedbackToConstraintsAdapter) to
object of the uk.ac.shef.dcs.sti.core.extension.constraints.Constraints class, which is
the extension of sti-main module and encapsulates user's suggestions for concrete Semantic
table interpreter run. The difference is, that Feedback comprises suggestions for all used
knowledge bases, but Constraints contain suggestions only for one knowledge base, which is
actually used in particular interpreter run.

Each run of the core algorithm is processed by the TAnnotation
uk.ac.shef.dcs.sti.core.algorithm.tmp.TMPOdalicInterpreter.start(Table table,
boolean statistical, Constraints constraints) method, which originally did not accept
feedbacks, so we added (and implemented) a new argument constraints to this method. We
also added another argument statistical, which does not come from Feedback, but from
Task configuration. The statistical data annotations part of the Feedback is considered only
when the statistical boolean argument is set to true.

16.1.7.2 Subject columns positions

User can suggest the positions of the subject columns, which then serve as the subjects for the
relation discovery process. The original TableMiner+ algorithm detected the main subject
column in the List<Pair<Integer, Pair<Double, Boolean>>>
uk.ac.shef.dcs.sti.core.subjectcol.SubjectColumnDetector.compute(Table table,
int... skipColumns) method according to the column data-types and other features and did
not support manual (user's) setting of the subject columns. Relations were originally
discovered only for the subject column detected by that method. Now when the subject
columns are suggested by the user, relations are discovered for all of them.

16.1.7.3 Ignoring the column

User may want to completely ignore the column, so that the column is not annotated
(disambiguated/classified) at all and also not considered in relations. This functionality was
already supported in the original algorithm and used in all its phases, but we changed the way
of passing the information about the indices of columns, which the user wants to ignore, to
the algorithm. Originally the indices were set in the configuration file and passed as argument
to the constructor of the uk.ac.shef.dcs.sti.core.algorithm.SemanticTableInterpreter
object (or inherited class objects). In our implementation we store the column positions in the
Feedback (resp. Constraints) class and pass as argument to the start method of the
TMPOdalicInterpreter (introduced above). This approach was chosen, because the
information about ignored column is part of the same object as other kinds of feedback and
can be set individually for each algorithm run.

 110

16.1.7.4 Compulsory columns

The algorithm performs classification and disambiguation phase only for columns where the
cells' content data type was recognized as named entity. User may want to compulsorily
perform them also when the content does not seem as named entity (e.g. when there are
numerical identificators). This functionality was already supported in the original algorithm,
but we changed the way of passing the information about the indices of compulsory columns.
Originally the indices was set in the configuration file and passed to the constructor of the
uk.ac.shef.dcs.sti.core.algorithm.SemanticTableInterpreter object (or inherited classes).
We store the positions in the Feedback (resp. Constraints) and pass as argument to the start
method of the TMPOdalicInterpreter (the same way as for ignored columns).

16.1.7.5 Ambiguity

User can leave certain cell of the input file ambiguous, meaning that the cell is not
disambiguated. The functionality of skipping the cells was implemented in the original
algorithm and used in the learning phase in the void
uk.ac.shef.dcs.sti.core.algorithm.tmp.LEARNING.learn(Table table, TAnnotation
tableAnnotation, int column, Constraints constraints) method, but not utilized in the
experimental batches. So we added new argument constraints to this method and the
positions of cells, which the user wants to skip, are read from this argument. The reading is
provided by the Set<Integer>
uk.ac.shef.dcs.sti.core.extension.constraints.Constraints.getSkipRowsForColumn(int
columnIndex, int rowsCount) method.

16.1.7.6 ColumnAmbiguity

This is just a short-cut for leaving all cells in the column ambiguous. It is manifested in the
Set<Integer>
uk.ac.shef.dcs.sti.core.extension.constraints.Constraints.getSkipRowsForColumn(int
columnIndex, int rowsCount) method, which returns all the rows to skip when the
ColumnAmbigutity is set for given column.

16.1.7.7 Classification

User can set custom classification resource for the column. In the original algorithm the
classification resource is voted according to classes of disambiguated cell values in the
Pair<Integer, List<List<Integer>>>
uk.ac.shef.dcs.sti.core.algorithm.tmp.LEARNINGPreliminaryColumnClassifier.runPrelim
inaryColumnClassifier(Table table, TAnnotation tableAnnotation, int column,
Constraints constraints, Integer... skipRows) method. So we added new argument
constraints to this method, and that extension allowed us to skip the process of voting and
just set the annotation chosen by the user. When the user explicitly sets empty classification,
then the column is left unclassified. Suggested classifications also affect the process of

 111

disambiguation, because in that case the candidates for disambiguation are searched in the
knowledge base with the type restriction of respective classification. But when the list of
candidates searched with this type restriction is empty, then the candidates are searched
again without the type restriction.

16.1.7.8 Disambiguation

User can set custom disambiguation resource for the cell. In the original algorithm the
candidate entities are searched in the knowledge base according to the cell value in the void
uk.ac.shef.dcs.sti.core.algorithm.tmp.LEARNINGPreliminaryDisamb.runPreliminaryDisam
b(int stopPointByPreColumnClassifier, List<List<Integer>> ranking, Table table,
TAnnotation tableAnnotation, int column, Constraints constraints, Integer...
skipRows) method. So we added new argument constraints to this method. In that extension
we also search in the knowledge base, because we need to fetch other attributes of the entity,
but we search for just one entity defined by its URI, so the searching is faster and simpler. This
also means, that when the user sets entity which does not exist in the knowledge base, we can
warn him (in the Warnings part of the Result). Then the entity suggested by user is set as a
candidate to the disambiguation algorithm in the same way as it was originally (which was
searched according to the cell value) to compute scores. This means that when the suggested
entity is not suitable for the cell value disambiguation, it can have the score value of zero,
When the user explicitly sets empty disambiguation, the cell is left ambiguous.

16.1.7.9 Relations

User can set custom predicates for relations between columns. In the original algorithm the
relation enumeration phase is provided by the void
uk.ac.shef.dcs.sti.core.algorithm.tmp.RELATIONENUMERATION.enumerate(List<Pair<Integ
er, Pair<Double, Boolean>>> subjectColCandidadteScores, Set<Integer> ignoreCols,
TColumnColumnRelationEnumerator relationEnumerator, TAnnotation tableAnnotations,
Table table, List<Integer> annotatedColumns, UPDATE update, Constraints
constraints) method. So we added new argument constraints to this method. In that
extension we just add the column relation annotations suggested by user. This does not
restrict the rest of relation discovery process, which can discover relations also between other
columns (with consideration of subject column) than the user suggested.

16.1.7.10 Statistical data annotations

This is our completely new extension. In our implementation the user can denote (in the Task
configuration) that the statistical data are processed. In this case the relation enumeration
phase is skipped (because columns describe dimensions and measures of the statistical data
cube and there are not relations in the strict sense between them). Instead of relations, the
statistical annotations are set in the void
uk.ac.shef.dcs.sti.core.algorithm.tmp.TMPOdalicInterpreter.setStatisticalAnnotation
s(List<Integer> annotatedColumns, Table table, TAnnotation tableAnnotations,

 112

Constraints constraints) method. Initially the algorithm considers named entity columns as
dimensions and non-named entity columns as measures. The user can change this later. Then
the user also (manually) sets the predicates which correspond to the columns (dimensions and
measures). These annotations are used for RDF export, which is generated according to the
RDF data cube standard, where each row of the input file represents one observation and
predicates describe dimensions and measures of the observation.

16.1.8 Result exports
User can export results of semantic table annotation in three forms:

 Annotations (JSON)

 Extended CSV

 RDF (triples)

All classes providing the export are located in the cz.cuni.mff.xrg.odalic.outputs package
(resp. its subpackages).

16.1.8.1 Annotations (JSON)

This file represents annotations to the extended CSV file according to the CSV on the Web
standard. It contains metadata for each of "physical" columns of the CSV file and also for extra
"virtual" columns describing classifications, relations or statistical data cube.

Model of Annotated table

 113

https://www.w3.org/2013/csvw/wiki/Main_Page

Example

{
"@context": "http://www.w3.org/ns/csvw",
"url": "file.csv",

"tableSchema": { "columns": [
{ "name": "City", "titles": ["City", "LAU_NAME, "Town"],
"dc:description": "City of Austria", "datatype": "string"
 "aboutUrl": "{City_url}",
 "propertyUrl": "dcterms:title"},
{ "name": "District", "titles": ["City", "DISTRICT_NAME"],
"dc:description": "District of Austria", "datatype": "string"
 "aboutUrl": "{District_url}",
 "propertyUrl": "dcterms:title"},
{ "name": "POP_FOR_NAT", "titles": ["Population of foreigners"],
"dc:description": "Population of foreigners in the given area",
"datatype": "string"
 "aboutUrl": "{City_url}",
 "propertyUrl": "x:hasPopulationNat"},
{ "name": "POP_TOTAL", "titles": ["Population Total"],
"dc:description": "Total Population in the given area", "datatype":
"string"
 "aboutUrl": "{City_url}",
 "propertyUrl": "x:hasPopulationTotal"},

{ "name": "City_type",
 "virtual": true,

 "aboutUrl": "{City_url}", //relies on value within the column
City - does it take valueUrl automatically (if available)?
 "propertyUrl": "rdf:type",
 "valueUrl": "http://adequate.at/concept/city"},

{ "name": "City_url", //do not produce to the output JSON, this
is used only to hold identifier for the row/part of the row

 "suppressOutput" : "true",
 "datatype": "anyURI"

 "valueUrl": "{City_url}"

{ "name": "City_alternative_urls", //in the form
"http://example.org/1 http://example.org/2"

 "aboutUrl": "{City_url}", //relies on value within the column
City - does it take valueUrl automatically (if available)?
 "separator": " ",
 "propertyUrl": "owl:sameAs",
 "valueUrl": "{City_alternative_urls}"},

{ "name": "District_type",

 114

 "virtual": true,
 "aboutUrl": "{District_url}",

 "propertyUrl": "rdf:type",
 "valueUrl": "http://adequate.at/concept/district"},},

{ "name": "District_url",

 "suppressOutput" : "true",
 "datatype": "anyURI"
 "valueUrl": "{District_url}, },

{ "name": "City_District_liesIn",

 "virtual": true,
 "aboutUrl": "{City_url}",
 "propertyUrl": "ad:liesIn",
 "valueUrl": "{District_url}"}, },
}, //end of table schema
} //end

Export process

First the annotations for original columns are created. They include original column name (also
as title), dataType String and when the column is disambiguated, then the relation between
corresponding *_url column and the column name with predicate dcterms:title is added. When
the disambiguations exist, the annotations for *_url (which only holds the URI of
disambiguation), resp. *_alternative_urls (which describes also relation between *_url and
*_alternative_urls with predicate owl:sameAs) are also created.

Then the header annotations (classifications) from the Result are read and for each of them
the virtual column describing the relation between *_url and classification resource with
predicate rdf:type is created.

Finally the column relation annotations from the Result are read and corresponding virtual
columns are created. The subject must be always resource. But the object can be also literal
(for example string or number). In this case we must also find the object dataType, which is
derived from the Range property of the relation predicate entity.

17 Statistical data specifics

When statistical data are processed, some more columns (apart from columns with original
input values, columns with disambiguation and alternative disambiguation URLs and virtual
columns describing classifications) are added to the Annotated table JSON (virtual columns
describing relations are not present, because relation discovery part of the algorithm is
skipped). Some newly added virtual columns describe just one certain triple (without links to
columns), because it is needed for definition of data cube.

 115

When the URL is written in prefixed form (compact IRI), the appropriate prefix mapping is
added to the "@context" attribute of annotated table. The "@context" attribute then contains
array with two objects: first item is String with link to the definition of CSV on the Web
standard context, second item is a map with prefixes used in the document (local context).

Dataset definition includes three virtual column with concrete triples: {datasetUri} rdf:type
qb:DataSet , {datasetUri} dcterms:title {inputIdentifier} and {datasetUri} qb:structure {dsdUri} ,
where datasetUri is generated accoridng to the template
"{kbInsertSchemaElementPrefix}dataset/{UUID}" and dsdUri according to
"{kbInsertSchemaElementPrefix}dsd/{UUID}" , inputIdentifier is set by user during file upload
and kbInsertSchemaElementPrefix is fetched from the KnowledgeBase configuration (property
called kb.insert.prefix.schema.element).

Data structure definition includes one virtual column with triple: {dsdUri} rdf:type
qb:DataStructureDefinition.

Then we add column "OBSERVATION_url" as holder for URLs of observations (similar as other
"*_url" columns for URLs of disambiguations) and two virtual columns linking the
"OBSERVATION_url" with rdf:type predicate to qb:Observation and with qb:dataset predicate to
{datasetUri}.

Component definition includes two virtual columns with concrete triples: {dsdUri}
qb:component {compUri} and {compUri} {kind} {colPredicate} , where compUri is generated
according to template "{kbInsertSchemaElementPrefix}dimension/{UUID}" in case of
dimension component or "{kbInsertSchemaElementPrefix}measure/{UUID}" in case of
measure component, kind is qb:dimension for dimension or qb:measure for measure and
colPredicate is set by user in feedback (predicate describing concrete relation of dimension or
measure associated with column of input file).

Next part is slightly different for dimension and for measure. Dimension definition includes
triples: {colPredicate} rdf:type rdf:Property , {colPredicate} rdf:type qb:DimensionProperty ,
{colPredicate} rdfs:label {colPredicateLabel} and {colPredicate} qb:concept {colClassification} ,
where colPredicateLabel is label associated with colPredicate entity and colClassification is
entity used for classification of the column. Measure definition includes triples: {colPredicate}
rdf:type rdf:Property , {colPredicate} rdf:type qb:MeasureProperty , {colPredicate} rdfs:label
{colPredicateLabel}, {colPredicate} qb:concept {colClassification} and {colPredicate}
rdfs:subPropertyOf sdmx-measure:obsValue .

And finally there is a virtual column describing relation between OBSERVATION_url column and
the column which is associated with the component. Relation predicate is colPredicate. In case
of dimension component the link points to the *_url column with disambiguation URLs. For
measure component the link points to the original column, which is not disambiguated,
because it does not contain named entity.

 116

17.1.1.1 Extended CSV

We generate the extended CSV file from the original input file by adding extra columns for the
disambiguated entities. These extra columns are named *_url for disambiguations from
primary knowledge base and *_alternative_urls for disambiguations from other knowledge
bases (there can be more values separated by the space), where * stands for the name of the
original column which is disambiguated. Together with Annotations (JSON) file it conforms to
the CSV on the Web standard.

Example

District; City; POP_FOR_NAT; POP_TOTAL;
City_url; District_url;
Graz-Stadt; Graz; 46952;
269997; ...; ...;
Deutschlandsberg; Aibl; 39; 1386;
...; ...;

Export process

In the export proces all chosen cell annotations from the Result are read. Annotation for
primary knowledge base is written to the *_url column (newly created, * stands for name of
the corresponding original column), other annotations are written to the *_alternative_urls
column. If the annotation for primary knowledge base is empty, one of other annotations is
moved to the *_url column.

18 Statistical data specifics

When statistical data are processed, one more column (apart from columns with
disambiguated URLs) is added to the extended CSV file. Its header name is "OBSERVATION_url"
and values in cells are generated according to this template:
"{kbInsertDataElementPrefix}observation/{UUID}", where kbInsertDataElementPrefix is
fetched from the KnowledgeBase configuration (property called kb.insert.prefix.data.element)
and UUID is generated randomly. These URLs then serve as subjects in triples describing
particular observations (every row is one observation).

18.1.1.1 RDF (triples)

RDF data are generated from the Annotated table (JSON) and extended Input (CSV) according
to csv2rdf standard. We can export data in various RDF formats, for example Turtle or JSON-
LD.

 117

https://www.w3.org/TR/2015/REC-csv2rdf-20151217
https://www.w3.org/2013/csvw/wiki/Main_Page

Example

<http://adequate.at/concept/city/aibl> a
<http://adequate.at/concept/city> ;
 dcterms:title "City", "LAU_NAME, "Town" ;

dc:description "City of Austria" ;
x:hasPopulationNat

"39"^^<http://www.w3.org/2001/XMLSchema#integer> ;
 x:hasPopulationTotal
"1386"^^<http://www.w3.org/2001/XMLSchema#integer> ;
 ad:liesIn
<http://adequate.at/concept/district/deutschlandsberg> .
<http://adequate.at/concept/district/deutschlandsberg> a
<http://adequate.at/concept/district>
 ...

Export process

RDF export consists of two parts:

 fetch the triple patterns from Annotated table

 create the triples from Input rows according to the patterns

19 Fetch the triple patterns

We read all columns from the Annotated table and try to recognize triple patterns they
describe. When the column has the suppressOutput boolean flag set to true, we do not
consider this column (it just holds the URIs and does not describe triples). If the propertyUrl is
empty, no triple can be created (the predicate is missing). The same situation applies for
empty aboutUrl (missing subject). When aboutUrl is not a column link (enclosed in curly
braces), the column describes just one fixed triple statement, so we add this statement to the
RDF Model directly (it is used for the statistical data cube definition). Then we finally can create
the triple pattern. When the valueUrl is empty, we create a DataPropertyTriplePattern, where
the object value in the column is literal). Otherwise we have two more options: When the
separator is empty, we create a ObjectPropertyTriplePattern, where subject pattern is link to
some column and object pattern can also be the link to the column or literal, so we save also
the dataType. Otherwise the separator exists and we create a ObjectListPropertyTriplePattern,
where the linked object column contains more resources separated by given separator.

20 Create the triples

Then we iterate over set of rows from the extended Input and for each row try to create the
RDF triple from each triple pattern. First we create the subject. We expect only link to the

 118

column (in curly braces), So we find the value in given column and current row and when the
value is not empty (and the column itself is not missing), we can create the IRI for subject.

IRI for predicate is already contained in the pattern, because we created it during creation of
the pattern.

When the pattern is instance of DataPropertyTriplePattern, we assume that the object is literal,
so when the value in given column and current row is not empty (and column is not missing),
we can create literal for object (with dataType xsd:string). When there is instance of
ObjectListPropertyTriplePattern, we must split the value according to given separator and for
each resulting value create the IRI of object (so that more triples will be created). Finally it
could be instance of ObjectPropertyTriplePattern, then the value can be IRI or literal. We can
recognize it by checking the validity of IRI (valid IRI contains a colon). If it is literal and
datatType is set and valid, we also set the dataType to the literal.

When we have the subject, predicate and objects created, we can add the new statements to
the RDF Model. We use RDF4J library for creating the Model, which can be then easily exported
by Rio to the specified RDF format.

21 Statistical data specifics

RDF export is processed the same way as for other than statistical data, it just includes
processing of certain additional triples (without links to columns) and differentiates between
creating of IRIs and Literals in object part of triples. Prefixes read from Annotated table
"context" attribute are set to the RDF Model, so they are written to the header part of the
resulting Turtle file.

21.1.1 Data cube
Statistical data can be published as RDF Data cube. General documentation of RDF Data cube
vocabulary can be found at http://www.w3.org/TR/vocab-data-cube/. The following content of
this section discusses information and proposals for RDF Data cube export functionality of
Odalic and corresponding issues and problems that were encountered.

21.1.1.1 Input file structure

First we had to decide which structure of input file would be supported by Odalic for
processing statistical data. There is an example of input file in documentation on the page
http://www.w3.org/TR/vocab-data-cube/#example:

2004-2006 2005-2007 2006-2008

Male Female Male Female Male Female

Newport 76.7 80.7 77.1 80.9 77.0 81.5

 119

http://www.w3.org/TR/vocab-data-cube/#example
http://www.w3.org/TR/vocab-data-cube/
http://docs.rdf4j.org/programming/
http://rdf4j.org/

Cardiff 78.7 83.3 78.6 83.7 78.7 83.4

Monmouthshire 76.6 81.3 76.5 81.5 76.6 81.7

Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6

There are three dimensions: time period (rolling averages over three year time-spans), region
and sex. Each observation represents the life expectancy for that population (the measure)
and we needed an attribute to define the units (years) of the measured values. This table has
multiline headers, heading rows and heading column. Then every cell represents one
observation. But this structure of the table is not in the end supported by Odalic. Odalic
supports only tables with exactly one header row and no header columns. So the data above
can be transformed to following table structure (slightly extended):

Country Region Time period Sex Life expectancy

Count1 Newport 2004-2006 Male 76.7

Count1 Newport 2004-2006 Female 80.7

Count1 Newport 2005-2007 Male 77.1

Count1 Newport 2005-2007 Female 80.9

Count1 Newport 2006-2008 Male 77.0

Count1 Newport 2006-2008 Female 81.5

Count1 Cardiff 2004-2006 Male 78.7

Count1 Cardiff 2004-2006 Female 83.3

Count1 Cardiff 2005-2007 Male 78.6

Count1 Cardiff 2005-2007 Female 83.7

Count1 Cardiff 2006-2008 Male 78.7

Count1 Cardiff 2006-2008 Female 83.4

Count2 Monmouthshire 2004-2006 Male 76.6

Count2 Monmouthshire 2004-2006 Female 81.3

Count2 Monmouthshire 2005-2007 Male 76.5

Count2 Monmouthshire 2005-2007 Female 81.5

Count2 Monmouthshire 2006-2008 Male 76.6

Count2 Monmouthshire 2006-2008 Female 81.7

Count2 Merthyr Tydfil 2004-2006 Male 75.5

 120

Count2 Merthyr Tydfil 2004-2006 Female 79.1

Count2 Merthyr Tydfil 2005-2007 Male 75.5

Count2 Merthyr Tydfil 2005-2007 Female 79.4

Count2 Merthyr Tydfil 2006-2008 Male 74.9

Count2 Merthyr Tydfil 2006-2008 Female 79.6

Then every row represents one observation. One column represents measure (Life
expectancy) and three columns represent dimensions (Region, Time period, Sex). First column
is neither measure nor dimension, because there is a relation between Country and Region.
There are no relations among other columns. Theoretically there could be more columns
representing measures.

21.1.1.2 Resulting RDF Data cube and the generated patterns

Based on the example above, there is complete resulting RDF Data cube in documentation at
http://www.w3.org/TR/vocab-data-cube/#full-example. According to the example in
documentation the RDF Data cube contains these parts:

 Data Set

 Data structure definition

 Dimensions and measures

 Observations

For every part there is a "pattern" showing how Odalic producec the RDF. For producing the
RDF Data cube we needed the Result provided by Odalic core algorithm and also the Data
cube definition ("CubeDef") provided by user. For every pattern there is depicted what
information we need from Result and CubeDef for producing the RDF.

Data Set pattern

Input from Odalic Result:

 (none)

Input from user's CubeDef:

Parameter Value

Title Life expectancy title

Label Life expectancy desc

Comment Life expectancy within Welsh Unitary authorities comment

 121

http://www.w3.org/TR/vocab-data-cube/#full-example

Description Life expectancy within Welsh Unitary authorities - extracted from Stats Wales

Subject http://purl.org/linked-data/sdmx/2009/subject/3.2

Organization Example org

 Note: Date for "issued" can be computed by program during RDF producing.

RDF output pattern:

-- Data Set --

eg:dataset a qb:DataSet;
 dct:title "Life expectancy title";
 rdfs:label "Life expectancy desc";
 rdfs:comment "Life expectancy within Welsh Unitary
authorities comment";
 dct:description "Life expectancy within Welsh Unitary
authorities - extracted from Stats Wales";
 dct:publisher eg:organization;
 dct:issued "2016-09-22";
 dct:subject <http://purl.org/linked-
data/sdmx/2009/subject/3.2>;
 qb:structure eg:dsd;
 .

eg:organization a org:Organization, foaf:Agent;
 rdfs:label "Example org";
 .

Data structure definition pattern

Input from Odalic Result:

 (none)

Input from user's CubeDef:

 Which columns are dimensions and measures - the column numbers (order in the Input of
the task) are enough.

RDF output pattern:

-- Data structure definition ----------------------------

eg:dsd a qb:DataStructureDefinition;
 # The dimensions
 qb:component [qb:dimension eg:refArea; qb:order 1];
 qb:component [qb:dimension eg:refPeriod; qb:order 2];

 122

 # The measure(s)
 qb:component [qb:measure eg:lifeExpectancy];

 # The attributes
 qb:component [qb:attribute sdmx-attribute:unitMeasure];
 .

Dimensions and measures pattern

Input from Odalic Result:

 Classification of columns pointed by user as dimensions and measures (Label and
Resource)

Input from user's CubeDef:

 Which columns are dimensions and measures (for example the number of column in input
is enough).

RDF output pattern:

-- Dimensions and measures ----------------------------

eg:refPeriod a rdf:Property, qb:DimensionProperty;
 rdfs:label "reference period";
 qb:concept <http://dbpedia.org/resource/Reference_period>;
 .

eg:refArea a rdf:Property, qb:DimensionProperty;
 rdfs:label "reference area";
 qb:concept <http://dbpedia.org/resource/Region>;
 .

eg:lifeExpectancy a rdf:Property, qb:MeasureProperty;
 rdfs:label "life expectancy";
 rdfs:subPropertyOf sdmx-measure:obsValue;
 qb:concept <http://dbpedia.org/resource/Life_expectancy>;
 .

Observations pattern

Input from Odalic Result:

 Disambiguation of cells in columns pointed by user as dimensions (Resource)

Input from user's CubeDef:

 Unit of measure (Resource)

 123

Note: Values of cells in column pointed by user as measure are obtained from the Input of the
task.

RDF output pattern:

-- Observations ---

eg:o1 a qb:Observation;
 qb:dataSet eg:dataset ;
 eg:refArea
<http://dbpedia.org/page/Newport,_New_South_Wales> ;
 eg:refPeriod
<http://reference.data.gov.uk/id/gregorian-interval/2004-01-
01T00:00:00/P3Y> ;
 sdmx-attribute:unitMeasure <http://dbpedia.org/resource/Year> ;
 eg:lifeExpectancy 76.7 ;
 .

eg:o2 a qb:Observation;
 qb:dataSet eg:dataset ;
 eg:refArea
<http://dbpedia.org/resource/Cardiff> ;
 eg:refPeriod
<http://reference.data.gov.uk/id/gregorian-interval/2004-01-
01T00:00:00/P3Y> ;
 sdmx-attribute:unitMeasure <http://dbpedia.org/resource/Year> ;
 eg:lifeExpectancy 78.7 ;
 .

21.1.2 Configurations export and import

21.1.2.1 Motivation

The result of the execution is determined by the following factors:

 content of the processed file

 parsing format assigned to the file

o e.g. changing the used delimiter can affect how many columns the CSV file has

 available knowledge bases

 124

o e.g. when some resource is missing in the base, the algorithm will not use it to
annotate any of the table parts

 task configuration, which stands for:

o task description

o the input file

o provided feedback which the server uses as constraints for the next algorithm run

o set of of bases, that the user selected to run the processing against

o chosen primary base

o specified maximum number of rows that will be processed from the file

o whether to approach the input as statistical data (which ultimately results in the
export of the RDF data cude)

It is impractical to transfer the whole knowledge bases, the more so because they are usually
remotely accessible. The definition of proxies on the other hand are small and easy to transfer.
Files are also easy to send from one machine to another, the remote file location can just be
shared (apart from the parsing format, but it hardly ever changes so it does not hurt to set it
up on another machine). What remains to solve is the task configuration export and import.

In the current state the task configuration includes also the definitions of the used base
proxies. When a base proxy of the same name is already present, it is used as it is; if not the
serialized definition is used to create the used base proxy first. The base proxies can also be
exported and imported independently on the tasks.

Tasks do also have other properties: owning user, task ID, time of creation/modification. But
these are ephemeral and not that useful to keep in a configuration transferable from machine
to machine.

21.1.2.2 Format choice

One has almost too many choices when choosing how to encode the configurations. Serialized
RDF is an appealing option, not only because of the project subject matter, but it also makes it
easy to accompany the processing results with their provenance. What makes the conversion
to RDF a challenge is a relatively large and diverse class hierarchy of the task configuration that
must be turned into RDF statements. It would be possible to write a code doing that by
manually constructing the RDF model, but an option to annotate the involved classes and
employ some framework to construct the statements automatically (as is the case when
mapping the domain classes to JSON through JAXB annotations for the REST API) appeared like
a better choice.

There are few options, such as Alibaba, Empire, but these are focused on storing Java objects
in RDF stores and are therefore too heavy for simple round-trip conversion. There is an

 125

https://github.com/mhgrove/Empire
https://bitbucket.org/openrdf/alibaba/src/master/object-repository/
https://www.w3.org/TR/vocab-data-cube/

existing older library http://rdfbeans.sourceforge.net/, which appears to be abandoned.
Ultimately Pinto library was chosen. Following the practice established to convert domain
objects to JSON for the REST API, a separate package cz.cuni.mff.xrg.odalic.api.rdf.values
containing the mapped versions of objects was established and these versions annotated with
Pinto annotations. Because the Pinto lacks the concept of XMLJavaTypeAdapters, the mapped
version of objects must refer to other mapped versions, and methods converting the value
objects back to the domain ones have to be provided.

Much larger complication appeared when attempting to convert Java Maps of more complex
types than Strings. Pinto did not handle these cases well, so the maps had to be converted to
collections of key-value entries first. Apart from that, the solution finalized in
cz.cuni.mff.xrg.odalic.api.rdf.TurtleRdfMappingTaskSerializationService and in
cz.cuni.mff.xrg.odalic.api.rdf.TurtleRdfMappingknowledgeBaseSerializationService
proved to be reliable, even for a complicated configuration cases, involving extensive user
feedback.

21.1.2.3 Format specification

All the exported tasks have a unique identifier generated, which is present in the serialized
configuration in a triple in the form:

<http://odalic.eu/odalic/SerializedTask/V5/246c095d-f89b-4151-962b-
34bd25b02843> a <http://odalic.eu/internal/Task>

The subject URI consists of three main parts: application instance web address (odalic.eu in
this case), version identifier (currently the fifth version) and UUID. The subject is of type
http://odali.eu/internal/Task, and through other RDF statements has all the other exported
properties linked. Properties such as http://odalic.eu/internal/Task/configuration follow a
common pattern where every property has a suffix in the form http://odalic.eu/internal ,
followed by the name of the class the property belongs to and the name of the property,
derived from the properties as defined by the objects exchanged through REST API.

Knowledge base proxies follow the same schema, only substituting Task for KnowledgeBase.
The underlying library does not map Java collections using RDF collections, but instead opts for
one-time (but not anonymous) nodes forming the defining connections. They share the same
prefix http://odalic.eu/odalic/SerializedTask/Node/ followed by UUID. These are also used to
represent contained entities (which alleviates the need to create manually unique identifier for
each "pointer"). The only exception are maps which are before mapping converted to a set of
entries (for example in the case of a map from base name to annotation candidates).

The typical fragment of exported configuration looks like this, which illustrates the above
mentioned peculiarities of the format:

 126

http://odalic.eu/internal/Task/configuration
http://odali.eu/internal/Task,
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/annotation/adapters/XmlAdapter.html
https://github.com/stardog-union/pinto
http://rdfbeans.sourceforge.net/

<http://odalic.eu/odalic/SerializedTask/V5/29eac34b-de44-4328-8d54-
ad97799384f7> a <http://odalic.eu/internal/Task> ;

<http://odalic.eu/internal/Task/configuration>
<http://odalic.eu/odalic/SerializedTask/Node/8a0734da21ccdc62ad71f2
483c8519d8> .

<http://odalic.eu/odalic/SerializedTask/Node/f1188357b6a2c82746d36a
f42dd04cb3> a <http://odalic.eu/internal/Entity> .

<http://odalic.eu/odalic/SerializedTask/Node/6ea67dc770af060bc491db
b8385bc867> <http://odalic.eu/internal/Entity/resource>
"http://dbpedia.org/dbtax/Surname" .

<http://odalic.eu/odalic/SerializedTask/Node/6532423b372f99780ed96f
118409c1d1> <http://odalic.eu/internal/EntityCandidate/score>
<http://odalic.eu/odalic/SerializedTask/Node/928ec89c7f9e3d7a72590c
219e1cb611> .

<http://odalic.eu/odalic/SerializedTask/Node/f501ceaf6326453502a757
e2a22ddcfa> <http://odalic.eu/internal/KnowledgeBase/insertGraph>
"http://odalic.eu" .

<http://odalic.eu/odalic/SerializedTask/Node/59d958855ae15086db58fe
a03a825b6f> a <http://odalic.eu/internal/Entity> .

<http://odalic.eu/odalic/SerializedTask/Node/4b072229a26e9e103703e0
60b1133020> <http://odalic.eu/internal/EntityCandidate/entity>
<http://odalic.eu/odalic/SerializedTask/Node/156ae04d9c18edca709e51
a644076014> .

<http://odalic.eu/odalic/SerializedTask/Node/156ae04d9c18edca709e51
a644076014> <http://odalic.eu/internal/Entity/label> "Person" .

<http://odalic.eu/odalic/SerializedTask/Node/fdcd19e5f18a7469262778
efed4bc633>
<http://odalic.eu/internal/EntityCandidateNavigableSetWrapper/value
>
<http://odalic.eu/odalic/SerializedTask/Node/239164724ee31eea35337b
2d0a83a21b> .

<http://odalic.eu/odalic/SerializedTask/Node/75734a569feba5ad18339a
2dbfa7cab7>
<http://odalic.eu/internal/KnowledgeBaseEntityCandidateNavigableSet
Entry/base> "DBpedia" .

<http://odalic.eu/odalic/SerializedTask/Node/6888029707e6588411dbbe
33f195597a> <http://odalic.eu/odalic/SerializedTask/Node/value>
3.0438887148351625E0 .

 127

...

21.1.3 Persisting server state

21.1.3.1 Motivation

Extraction of the Linked Open Data is an expensive process. The knowledge bases are usually
accessed remotely, and even if they are mirrored locally or most of the requests hit the cache,
the processing can take from several seconds up to several hours. Therefore it is crucial that
once computed results are not involuntarily lost, and there is no need to run it again. Apart
from that the requirements on the permanent storage by the Odalic Semantic Table
Interpretation are relatively modest. There is only a handful of classes which instances has to
be serialized:

 Users attempting registration.

o Otherwise the sign up requests would get lost and confirmation links sent in e-mails
would not work.

 Registered users.

o This requirement is natural.

 Logged in users.

o This could be eventually omitted, but since the tokens distributed by the application
might be relatively long-lived (as is the case of the UnifiedViews plugin), it is better
to keep it safe.

 Files data and meta-data.

o Even in the case of remote files, there is strong need to keep the format used by the
parser intact.

 Files utilization by the tasks.

o Files can be shared between several task, if we loose this information, a file might
accidentally get deleted, despite being a dependency of some configured task.

 Task configurations.

o This requirement could be theoretically partially solved by exporting the definitions
and re-importing them in time of need. But this is impractical in large numbers. Also
the configurations do not keep references to the owning users (to allow easy
exchange and archiving) and the files are linked only by their ID.

 Results.

 128

o As mentioned in the introducing statement, all the tasks could be potentially re-run,
but there are good reasons not to.

21.1.3.2 MapDB

Embedded database MapDB was selected as the solution for keeping the state from several
reasons:

 There is no need to somehow convert or map the stored objects. They only need to be
serializable and immutable, which is a good idea anyway.

 Its interfaces are common Java collections and maps, therefore its usage is almost
seamless in simple cases.

o This came handy because all of the aforementioned services were written as
memory-only first (and still can be set as, through the Spring configuration), where
the objects were kept in the Java collections and maps.

 It comes with write-ahead-log and transactions.

 It is performing well enough.

 It has a decent support for nested maps, called prefix tables, similar to Guava Tables.

o This served well when the time to extend the existing code to provide separate user
spaces came. It practically meant only to introduce a top-level map from user IDs to
the previously used maps.

Despite being in version 3, it still has some minor flaws, which were not an obstacle to its
deployment in Odalic:

 The transactions are limited only to collection instances spawned from the same DB object.
This makes them hard to execute across method boundaries without sharing the DB
project. This is a major design nuisance, which one does not usually encounter when
relying on mainstream Java Transaction API.

 Also all commits and roll-backs has to be explicit.

 In comparison to previous version, the 3rd one is forcing its users to cast map keys to
Objects in order to use the prefix tables. This makes the code inherently less safe (and
indeed we encountered a bug that was hidden behind this, when testing the Odalic server).

Usage within the project

All stored objects are kept in collections and maps initialized from a single MapDB object,
which is obtainable by calling a method getDb() at
cz.cuni.mff.xrg.odalic.util.storage.FileDbService, which implements interface

 129

https://github.com/google/guava/wiki/NewCollectionTypesExplained#table
https://jankotek.gitbooks.io/mapdb/content/btreemap/
https://jankotek.gitbooks.io/mapdb/content/performance/
https://jankotek.gitbooks.io/mapdb/content/performance/
http://www.mapdb.org/

cz.cuni.mff.xrg.odalic.util.storage.DbService. User can specify the location of the used
writeable file at key cz.cuni.mff.xrg.odalic.db.file in the config/sti.properties.

For example initialization of a map from user IDs to the user instances looks like this:

this.db = dbService.getDb(); // Kept for further use, mainly
commiting of transactions.
this.userIdsToUsers = this.db.hashMap("userIdsToUsers",
Serializer.STRING, Serializer.JAVA).createOrOpen(); // Uses a more
performant MapDB serializer for the keys.

Typical write to the DB can be found in a method
cz.cuni.mff.xrg.odalic.users.DbUserService.confirmPasswordChange(Token), which
demonstrates how the transactions work:

@Override
public void confirmPasswordChange(final Token token) {
 final DecodedToken decodedToken = validateAndDecode(token);

 final User newUser = matchPasswordChangingUser(decodedToken);

 final User replaced;
 try {
 replaced = replace(newUser);
 } catch (final Exception e) {
 this.db.rollback(); // Rollback in case the user version
replacement fails.
 throw e;
 }

 invalidateTokens(replaced);

 this.db.commit(); // Commit in case of success.
}

private User replace(final User user) {
 final User replaced =
this.userIdsToUsers.replace(user.getEmail(), user);
 Preconditions.checkState(replaced != null, "Nonexisting user!");

 return replaced;
}

 130

21.1.4 Configuration
The Odalic server has one main configuration file with general settings and several specialized
configuration files for various parts of the server. All of the specialized configuration files are
referenced in the main file either directly, or through other specialized files. The path to the
main configuration file is set through the environment variable cz.cuni.mff.xrg.odalic.sti.

Code Block 9 Example VM options:

-Dcz.cuni.mff.xrg.odalic.sti=c:\odalic\sti\config\sti.properties

Main Settings

KB Proxy Settings

KB Structure Settings (Groups)

Websearch Settings

21.1.4.1 Main Settings

All main settings are mandatory, unless it is stated otherwise in the description.

File Paths

 sti.home - STI home folder. All other file paths wil be relative to this (except otherwise
stated).

Code Block 10 Example

sti.home = d:\\Documents\\odalic\\sti\\

 sti.nlp - Folder containing nlp resources, by default this is the "/resource" folder in the
distribution. The resources generally contain data that may change during the processing,
so it makes sense to keep them apart from the configuration.

Code Block 11 Example

sti.nlp = resources

 sti.cache.main.dir - Folder containing cached data. Whenever KB search or Web search is
performed, the query and results are cached in a Solr instance. This specifies the base path
of all Solr instances.

 131

Code Block 12 Example

 sti.cache.main.dir = ..\\cache\\

 sti.websearch.properties - Web search configuration files. By default, it is in the "/config"
folder of the distribution. See Websearch Settings.

Code Block 13 Example

 sti.websearch.properties = config\\websearch.properties

 Former sti.kbproxy.propertyfile option, which contained a list of bases to load, has been
made obsolete thanks to introduction of runtime KB management. Nevertheless the user
can still leave KB proxy configuration files in the config library and they are scanned during
startup to create the initial set of available bases for a newly signed-up user. This helps to
provide examples to customize, while keeping the old files format which is arguably easier
to manually customize than exported RDF configurations. These should be put in the
"/config" folder of the distribution. See KB Proxy Settings for details of the files.

Subject column detection, the ws scorer

 sti.subjectcolumndetection.ws - Choose whether STI should use the web search score in
detecting subject columns (the columns serving as the source of relations with other
columns).

Code Block 14 Example

 sti.subjectcolumndetection.ws = true

 sti.iinf.websearch.stopping.class - If the above mentioned option is on, determines what
stopping criteria class should be used. Must extend the
uk.ac.shef.dcs.sti.core.algorithm.tmp.stopping class.

Code Block 15 Example

 sti.iinf.websearch.stopping.class =
uk.ac.shef.dcs.sti.core.algorithm.tmp.stopping.IInf

 sti.iinf.websearch.stopping.class.constructor.params - If the ws option is on, this
provides the stopping criteria class above its constructor parameters in the order as
defined, delimited by ",". These options generally serve to fine-tune the algorithm results
and are hardly ever needed to be modified.

 132

Code Block 16 Example

 sti.iinf.websearch.stopping.class.constructor.params =
0.0,1,0.01

Relation enumeration

 sti.learning.relation - Choose whether or not STI should annotate relations. May be
turned off when this is not required, for example when the administrator wants to rely only
on the relations between columns and not put in relation the individual row cells in the
results.

Code Block 17 Example

 sti.learning.relation = true

Output

 cz.cuni.mff.xrg.odalic.prefixes - Prefix mapping configuration for the resources provided
to the clients. Defines commonly used URI prefixes. A good candidate to turn into runtime
option in later releases.

Code Block 18 Example

 cz.cuni.mff.xrg.odalic.prefixes = config\\PrefixMapping.ttl

Tableminer+

 sti.tmp.iinf.learning.stopping.class - What stopping criteria class should be used in the
iinf for preliminary column classification. Must extend the
uk.ac.shef.dcs.sti.core.algorithm.tmp.stopping class.

Code Block 19 Example

 sti.tmp.iinf.learning.stopping.class =
uk.ac.shef.dcs.sti.core.algorithm.tmp.stopping.IInf

 sti.tmp.iinf.learning.stopping.class.constructor.params - For the stopping criteria class
provided above, also provide its constructor parameters in the order it is defined in the
class values separated by ",".

 133

Code Block 20 Example

 sti.tmp.iinf.learning.stopping.class.constructor.params =
0.0,1,0.05

Mail (for confirmation emails)

 mail.username - SMTP server user name.

 mail.password - SMTP server password.

 mail.from - Sender of the outgoing e-mails.

 mail.smtp.host - Address of the SMTP server.

 mail.smtp.auth - Choose whether or the SMTP server use authentication.

 mail.smtp.port - Port of the SMTP server.

 mail.smtp.socketFactory.class - Class used as socket factory.

 mail.smtp.socketFactory.port - Port used by the socket factory.

Code Block 21 Example

mail.username = odalic@email.cz
mail.password = password
mail.from = odalic@email.cz
mail.smtp.host = smtp.seznam.cz
mail.smtp.auth = true
mail.smtp.port = 465
mail.smtp.socketFactory.class = javax.net.ssl.SSLSocketFactory
mail.smtp.socketFactory.port = 465

Users

 cz.cuni.mff.xrg.odalic.users.maximumCodesKept - Maximum temporary codes kept per
queue. When the confirmation of sign-up and password change is on, this helps to prevent
to grow the waiting queue out of proportions.

 cz.cuni.mff.xrg.odalic.users.session.maximum.hours - Maximum hours that a single
session can last.

 cz.cuni.mff.xrg.odalic.users.signup.window.minutes - Length of the time window when
the sign-up confirmation token is active (in minutes).

 cz.cuni.mff.xrg.odalic.users.reset.window.minutes - Length of the time window when
the password setting confirmation token is active (in minutes).

 134

 cz.cuni.mff.xrg.odalic.users.signup.url - URL format for a sing-up confirmation. This is
put in the confirmation e-mails in order the lead the user to the correct running UI
instance.

 cz.cuni.mff.xrg.odalic.users.reset.url - URL format for a password setting confirmation.
This is put in the confirmation e-mails in order the lead the user to the correct running UI
instance.

 cz.cuni.mff.xrg.odalic.users.admin.email - Administrator's email (and the user ID).

 cz.cuni.mff.xrg.odalic.users.admin.password - Administrator's initial password. It is
recommended to change it using the standard REST API or UI means.

Code Block 22 Example

cz.cuni.mff.xrg.odalic.users.maximumCodesKept = 100
cz.cuni.mff.xrg.odalic.users.session.maximum.hours = 172
cz.cuni.mff.xrg.odalic.users.signup.window.minutes = 30
cz.cuni.mff.xrg.odalic.users.reset.window.minutes = 30
cz.cuni.mff.xrg.odalic.users.signup.url =
http://localhost:8080/odalic-ui/index.html#/signup/%s
cz.cuni.mff.xrg.odalic.users.reset.url =
http://localhost:8080/odalic-ui/index.html#/chngpasswd/%s
cz.cuni.mff.xrg.odalic.users.admin.email = odalic@email.cz
cz.cuni.mff.xrg.odalic.users.admin.password = admin

Tokens

 cz.cuni.mff.xrg.odalic.tokens.issuer - Name of the organization issuing this instance
tokens. Serves mainly to distinguish tokens from non-related instances of the application.

Code Block 23 Example

 cz.cuni.mff.xrg.odalic.tokens.issuer = Odalic

 cz.cuni.mff.xrg.odalic.tokens.secret - Secret used for generating and verifying
authentication tokens.

Code Block 24 Example

 cz.cuni.mff.xrg.odalic.tokens.secret =
cPLsKpTZxAcDZH5cqg3bxAet3VdAJ683X8Ccu8yTyFh

Storage

 cz.cuni.mff.xrg.odalic.db.file - The local database file used to store Odalic data.

 135

Code Block 25 Example

 cz.cuni.mff.xrg.odalic.db.file = resources\\db.dat

21.1.4.2 KB Proxy Settings

Common Settings

Mandatory common settings:

 Former option kb.cacheTemplatePath has been eliminted, the caches are dynamically
created in the main cache folder for each user and his or her base.

 kb.advancedType- The name of the type. May affect interpreation of advanced key-values
defined for the Knowledge base proxy.

Code Block 26 Example

kb.advancedType = SPARQL

 kb.name - The name of the knowledge base. Should be unique.

Code Block 27 Example

kb.name = DBpedia

 kb.stopListFile - A file that lists things (e.g., predicate URIs) to be used by an instance of
uk.ac.shef.dcs.kbproxy.KBSearchResultFilter, which decides what
triples/relations/classes to remove from the result as they are too general or meaningless.
Specific rules are implemented by subclasses of
uk.ac.shef.dcs.kbproxy.KBSearchResultFilter, which should be instantiated as part of
uk.ac.shef.dcs.kbproxy.KBProxy.

Code Block 28 Example

kb.stopListFile = resources\\kbstoplist_dbpedia.txt

 kb.endpoint - SPARQL endpoint of the knowledge base.

Code Block 29 Example

kb.endpoint = http://localhost:8896/sparql

 136

 kb.structure.groups - The list of predicates used in the knowledge base. Multiple
configuration files can be separated by the "|". See KB Structure Settings (Groups).

Code Block 30 Example

kb.structure = dbpedia|rdf|skos

Insert Settings

 kb.insert.supported - Enables inserting new concepts into the knowledge base.

kb.insert.supported = false

Mandatory insert settings when kb.insert.supported is true

 kb.insert.prefix.data - Prefix used in data elements (instances of classes).

Code Block 31 Example

kb.insert.prefix.data = http://odalic.eu/resource/

 kb.insert.prefix.schema - Prefix used in schema elements (classes and properties).

kb.insert.prefix.schema = http://odalic.eu/schema/

 kb.insert.graph - Named graph used for new concepts.

Code Block 32 Example

kb.insert.graph = http://odalic.eu

 kb.fulltextEnabled - Enables full-text search in the knowledge base. If a query keyword
does not match to anything, it tries to split it into parts using "and".

Code Block 33 Default

 kb.fulltextEnabled = true

 kb.useBifContains - Enables support for the Virtuoso full-text search. Does nothing if the
full-text search is disabled.

 137

Code Block 34 Default

 kb.useBifContains = true

 kb.languageSuffix - The language suffix used in exact string matching and labels of newly
added concepts.

Code Block 35 Default

 kb.languageSuffix =

Optional insert settings (the implementation is free to ignore and even when omitted, the
shown values are used as defaults).

 kb.insert.endpoint - When present it is used to insert resources instead of the default
one. Some bases do have separate endpoint for insertion.

kb.insert.endpoint =

 kb.insert.defaultClass - Default class used in situations, when the class is not specified.

Code Block 36 Default

kb.insert.defaultClass = http://www.w3.org/2002/07/owl#Thing

 kb.insert.predicate.label - Predicate used for assigning labels.

Code Block 37 Default

kb.insert.label = http://www.w3.org/2000/01/rdf-schema#label

 kb.insert.predicate.alternativeLabel - Predicate used for assigning alternative labels.

Code Block 38 Default

 kb.insert.label = http://www.w3.org/2000/01/rdf-schema#label

 kb.insert.predicate.subclassOf - Predicate used for the "subclass of" relationship.

Code Block 39 Default

 kb.insert.predicate.subclassOf =
http://www.w3.org/2000/01/rdf-schema#subClassOf

 kb.insert.predicate.subPropertyOf - Predicate used for the "sub-property of"
relationship.

 138

Code Block 40 Default

 kb.insert.predicate.subProperty =
http://www.w3.org/2000/01/rdf-schema#subPropertyOf

 kb.insert.type.class - Type used for inserting classes.

Code Block 41 Default

 kb.insert.type.class = http://www.w3.org/2002/07/owl#Class

 kb.insert.type.property - Type used for inserting properties.

Code Block 42 Default

 kb.insert.type.property = http://www.w3.org/1999/02/22-rdf-
syntax-ns#Property

 kb.insert.type.dataProperty - datatype properties type

kb.insert.type.dataProperty =
http://www.w3.org/2002/07/owl#DatatypeProperty

 kb.insert.type.objectProperty - object properties type

kb.insert.type.objectProperty =
http://www.w3.org/2002/07/owl#ObjectProperty

Other optional settings (implementation is free to ignore them too).

 kb.classTypeMode - During initial disambiguation, class restriction is applied to the
disambiguated entity. There are two modes, in which the class restriction may be applied.
In the standard “indirect” mode, the disambiguated entity must be instance of something,
which is a class. In the direct mode, the disambiguated entity can be class itself - this is the
case e.g. in case of SKOS schemas, where there are just skos:Concepts.

Code Block 43 Default

 kb.classTypeMode = indirect

 kb.structure.predicate.instanceOf - Predicate used for the "instance of" relationship.

Code Block 44 Default

 kb.structure.predicate.instanceOf =
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 kb.structure.predicate.domain - Predicate used to specify domains of properties.

 139

Code Block 45 Default

 kb.structure.predicate.domain = http://www.w3.org/2000/01/rdf-
schema#domain

 kb.structure.predicate.range - Predicate used to specify ranges of properties.

Code Block 46 Default

kb.structure.predicate.range = http://www.w3.org/2000/01/rdf-
schema#range

21.1.4.3 KB Structure Settings (Groups)

These settings define the structure of the knowledge base. Each setting can contain multiple
values separated by the space character " ". Mandatory settings must be defined in at least
one group per knowledge base proxy. For the initially loaded bases, these are located in the
enums subdirectory. The base configurations can either specify them manually or let the
application detect them manually before each task run when the key kb.structure.groups is
omitted in the KB proxy definition.

Types

All settings in this category are optional.

 kb.structure.type.class - Types used for classes. This setting is by default undefined.

Code Block 47 Example

kb.structure.predicate.type = http://www.w3.org/1999/02/22-rdf-
syntax-ns#type

 kb.structure.type.property - Types used for properties. This setting is by default
undefined.

Code Block 48 Example

kb.structure.type.property = http://www.w3.org/1999/02/22-rdf-
syntax-ns#Property

Predicates

Mandatory predicates (in the sense that at last one of the groups used by the must have
them defined).

 kb.structure.predicate.label - Predicate used for assigning labels.

 140

Code Block 49 Example

kb.structure.predicate.label = http://www.w3.org/2000/01/rdf-
schema#label

 kb.structure.predicate.type - Predicate used for the "type" relationship.

Code Block 50 Example

kb.structure.predicate.type = http://www.w3.org/1999/02/22-rdf-
syntax-ns#type

Optional predicates.

 kb.structure.predicate.description - Predicate used for assigning descriptions. This
setting is by default undefined.

Code Block 51 Example

kb.structure.predicate.description =
http://dbpedia.org/ontology/abstract

21.1.4.4 Websearch Settings

All websearch settings are mandatory.

The Websearch Implementation

 web.search.class - What class should be use to do web search (used in subject column
detection for computing the ws score). It must extend uk.ac.shef.dcs.websearch.WebSearch
and uk.ac.shef.dcs.websearch.WebSearchFactory must be revised to instantiate it by
reflection.

Code Block 52 Example

web.search.class = uk.ac.shef.dcs.websearch.bing.v5.BingSearch

BingSearch specific settings

 bing.key - This is the API key to be used with BingSearch. You should apply for your own at:
https://datamarket.azure.com/dataset/bing/searchweb (Bing Search API, Web Results
Only).

Code Block 53 Example

 bing.key = e413ab08c2e74283b12205f9453350ee

 bing.url - Default URL to access Bing Search API (Web Results Only).

 141

https://datamarket.azure.com/dataset/bing/searchweb

Code Block 54 Example

 bing.url =
https://api.cognitive.microsoft.com/bing/v5.0/search?q=

21.1.5 RDF manipulation
The server has to deal in some places with the need to create, manipulate, import, export,
query or otherwise interact with RDF data. There are already several established libraries or
even frameworks that provide these services directly or became a part of other libraries, which
in turn have become the Odalic dependencies. The most prominent ones are:

 RDF4J

o While there are some dependencies (such as the Pinto library used to annotate
classes for export and import, which did not move to new version from the 2.7 yet)
that require to use its older versions simultaneously to the recent ones, there is
certainly deficit in the fact the explicit usage (in the algorithm relatively old version
or export preprocessing, fairly recent one) could be reduced to one version, thus
benefiting from the reduced size of the deployed archive, faster start-up and easier
future maintenance.

 Jena

o While it may seem that many of the use cases are covered by RDF4J, Jena still found
its use thanks to its capabilities in constructing of the SPARQL queries and
potentially useful OWL support.

22 UI

22.1.1 Introduction
We decided to go with the approach of developing a single page application (SPA), which would
communicate with the server via REST application interface. This way the server is lighter and
does not have to deal with issues on the client's side. It allows for the server to be (almost)
completely isolated, more secure, and puts weight of computing page look solely on the
client's computer, which in turn increases the overall throughput of the server. Modern
internet browsers make this approach possible on almost every popular platform.

We decided to stick with the basic personal computers as our platform of choice with installed
browser(s) that support(s) HTML5, such as Microsoft® Edge 14 (or newer), Mozilla Firefox 50 (or
newer) and Google® Chrome 49 (or newer). We used JavaScript language and Angular

 142

https://jena.apache.org/
http://rdf4j.org/

(https://angularjs.org/) framework for the overall UI development, which would also determine
the application architecture. Angular was chosen based on its popularity, good documentation
and robustness, providing the desired functionality for almost everything we needed.

22.1.2 Architecture
Angular separates the entire application into several 'views'. It basically maps a route to a
template which is then used for display. We usually call these 'views' as 'screens'. Each screen
consists of a template, which is a portion of HTML code, and controller, being a piece of
JavaScript code that 'controls' the template, providing functionalities for user interaction.
During development, our goal was to put most of the code that determines visuals and
contents of each screen into templates, while leaving controllers 'clean', providing only the
necessary functions requested by templates. This also explains our certain design decisions,
some of them will be described later.

Certain sub-parts of views naturally occur more than once in an application. For that reason
Angular comes with a notion of directives: a pieces of code (sometimes) with their own
templates attached. These may be later reused in views, or other directives. Last, but not least,
for implementation of business logic, Angular provides services, which can be used by any
controller, or another services.

22.1.3 Folder structure
The project is structured in the following way:

 font: external font files used by the application

 graphics: images used by the application

 less: stylesheets in the CSS/LESS format

 css: pre-compiled stylesheets from less folder

 lib: external libraries

 test: exemplar input files and responses from the server

 src: application source files

o common: directives in the role of subcomponents, such as navigation bar, page
footer, etc.

o directives: generic reusable directives, such as modal window, pagination, tooltips,
etc.

o filters: generic custom angular filters

 143

https://angularjs.org/

o services: implementation of business logic, such as REST services, authentication,
etc.

o templates: application screens / views

 may be structured to subcomponents

o util: generic utilities

index.html, contained within the root directory, is the application's entry point.

22.1.4 External libraries
As mentioned, for the overall development, Angular framework was used. Additional used
libraries include:

 bootstrap: a popular, comprehensive CSS framework (http://getbootstrap.com/), speeding
up overall development, providing basic styling and allowing for easy implementation of
responsive pages

 d3: a library selected for implementation of graphvis component (see Graphvis below)

 date: provides basic functions for working with dates

 fontawesome: a popular, icon-based, font for improving overall appearance of the
application

 jquery: better integration with bootstrap as well as speeding up development of directives

 satellizer: JWT based authentication / authorization library

 uiboostrap: a collection of several bootstrap modules, packed as directives, for better
integration with Angular framework

 less: interpreter of CSS/LESS stylesheets, used only during development (to optimize the
application, the CSS/LESS stylesheets are pre-compiled)

 papaparse: parser of CSV files; for testing purposes only, when running application
without the server

22.1.5 Goals
As mentioned, during development our goal was to keep the application extensible (where
possible) while also allowing for easy changes for the common cases. That is why we strived to
keep logic and visuals in screens as much as possible separated. Most of the time controllers
of screens do actually provide only the functionalities necessary, while leaving visuals solely up
to templates of the screens. This may make certain development decisions look illogical to
some as demonstrated by the following example, but helping us achieve our goal in the end:

 144

http://getbootstrap.com/

Template:

...
<injector for="msgtxt.configdFailure">An error occurred while
trying to download the task's configuration.</injector>
...

Corresponding controller:

...
$scope.messages.push('error', $scope['msgtxt.configdFailure']);
...

The example relates to a situation when there is an uncatched error that needs to be
displayed to a user. While it was possible to declare the message in the controller, by injecting
it via template we can keep controllers 'clean' and allow for easy changes in the future.

22.1.6 Application loading
index.html being the entry point of the application references scripts used via <script
src="..."> HTML element. All external libraries are loaded this way and the main source file,
src/global.js, defines the way of loading all other resources. It looks up src/require.json file
for determining what components need to be loaded with an exception of screens, which are
then loaded via src/templates/templates.js. Usage of JSON files, such as src/require.json,
allows for easier extensibility of the application, requiring programmer only to write what
additional components (s)he would like to be loaded, instead of editing the actual code. This
adds to clarity and speeds up development. The components (in this case we mean views,
directives, services, ...) then may be separated into several files and may consist of other
subcomponents. However, loading of those has to be handled by the corresponding
component itself.

Loading of screens is a little less straightforward. Screens have to be mapped to a certain
route. Additionally it may be useful not to have a custom controller specified for certain
screens, only a template, where there is no functionality necessary (take for example home
screen displaying basic information about the project, while providing no user interaction at all). For
clarity we decided to represent this in src/templates/mappings.json. Each screen is
represented with an object:

{
 "route": "/signup/:token",
 "folder": "signupcnf",
 "controller": "odalic-signupcnf-ctrl"

 145

}

while "route" being the route the screen is mapped to, "folder" being the name of a folder
the screen is located in (omitting src/templates/) and "controller" being a name of the
corresponding controller. The name has to match the one specified in the actual controller
definition. Additionally it may be equal to "generic" in which case it is assumed no custom
controller is needed and only the template is loaded for the route. (Note that in this case simply
an empty controller is created automatically.)

Please note the AngularJS supports a way to map a screen not only to a specific single route,
but also to a pattern. In the case of /signup/:token, upon visiting /signup/anything, the
mapping still holds. Not only that, we can also retrieve what :token part of the route is equal
to (in this case "anything") and specify further action based on this information. Such
mechanism is used, for instance, by a sign up confirmation screen, which retrieves token
directly from the route (route being visited by a user upon receiving an e-mail to 'confirm the sign
up by visiting the following link: http://.../signup/GcOiJUz1...'), sends it to server for evaluation and
displays information about the state of sign up process to the user.

For redirecting purposes there is another type of object that may be specified:

{
 "route": "/home",
 "target": "/",
 "controller": "reroute"
}

while "route" being the route the "redirect" is mapped to, "target" being the route to
redirect to, and "controller" set to "reroute" (for clarity).

Name of the template has to always be template.html while controller has to be named
controller.js. Loading of subcomponents / other files is handled individually.

22.1.7 Screens
The whole application is divided into screens. While some of their elements are the same (e.g.
navigation bar, footer, ...), for the application to be as flexible as possible, none of the elements
(except header) are hard-coded in the entry point. This allows for easier implementation of
special cases, e.g. when the footer on a certain screen is to be different, or no present at all,
etc.

 146

In order to not repeat large amount of code throughout the screens, we separated common
screen elements into 3 subcomponents:

 main-cnt: represents a wrapper around 'main content', i.e. the whole screen content needs
to be contained within this element.

 navbar: a configurable navigation bar, has to be put inside main-cnt element.

 footer: a generic footer same for most of the screens.

That means an ordinary screen template will look like this:

<!-- Main Content -->
<main-cnt>
 <!-- Navigation Bar -->
 <navbar selected="home" lmenu="default-lm.json" rmenu="default-
rm.json"></navbar>

 <!-- Content + Sidebar -->
 <div class="container-fluid">
 <!-- Sidebar -->
 <div class="col-sm-3">

Sidebar content
 </div>

 <!-- Content -->
 <div class="col-sm-9">
 Main content
 </div>
 </div>
</main-cnt>

<!-- Footer -->
<footer/>

22.1.7.1 Navbar

navbar is a configurable navigation bar, which means on each screen it can be set what items
should be available and what item should be highlighted as the selected one. Available items
have to be specified as a relative path to a file in JSON format. Specifically, there has to be a file
describing menu on the left and a file describing menu on the right on the navigation bar.
These two differ in how they work.

Menu on the left is an array of objects of the following format:

 {
 "id": "home",

 147

 "title": "Home",
 "link": "#/",
 "menu": []
 }

The exemplary object describes a single item on the navigation bar. "id" stands for identifier
of the item. This can be referenced when describing what item is selected on a current screen.
"title" stands for text displayed, "link" for where to redirect upon click and finally "menu" is
an array of subitems. If the "menu" is not an empty array, "link" property should be omitted.
The "menu" items look like this:

{
 "title": "File list",
 "link": "#/filelist"
}

where "title" stands for text displayed, "link" for where to redirect upon click. If no
properties are provided, the item is identified as a separator (visual purposes).

Menu on the right consists of following type of objects:

{
 "id": "signup",
 "title": "Sign up",
 "link": "#/signup",
 "icon": "glyphicon-user",
 "condition": "!$auth.isAuthenticated()"
}

While being for the most part the same as objects in the left menu, there are some
differences:

 Items on the right have an icon attached. See http://getbootstrap.com/components/
reference for allowed icons.

 Items on the right may not represent a menu of subitems.

 Items on the right may specify a "condition" property, which determines whether should
the item be displayed or not. Note that conditions are evaluated during each Angular
digest cycle, therefore complicated conditions may cause performance issues.

 148

http://getbootstrap.com/components/

22.1.8 Services
ODALIC being a single page application, most of the logic is handled on the server. Data
exchanged between client and the server is realized via asynchronous requests (A JAX) and are
(mostly) in JSON format. For data exchange a "rest" service (actual name of the service) is
implemented, which transforms data sent/received, automatically injects headers required by
the API and generally eases the overall work with the server's interface. The service is divided
into parts corresponding to the ones described in REST API specification.

To handle generic A JAX requests a "requests" service is implemented. Most of the responses
from the server have a standardized format and therefore can be automatically parsed and
transformed. The service handling this is injected via "ioc['requests']", where "ioc" is a
service being a very simple implementation of IoC (inversion of control) pattern
(src/services/ioc/modules.json is the configuration file). The "ioc['requests']" additionally
handles the case of unauthorized access to resources (redirecting to log in screen by default).

22.1.9 Authentication and authorization
As described in Authentication and authorization, to ensure security, JWT (JSON Web Tokens)
standard is used. For this we used Satellizer library (https://github.com/sahat/satellizer), which
automatically signs each A JAX request with an appropriate authorization header and allows
for easy token storage on a user's computer. Additionally, the library conveniently handles
requests for logging and signing up.

Several screens are associated with the authentication / authorization process:

 signup: allows users to sign up

 signupcnf: maps to a route received by a user in an e-mail (the e-mail requesting user's
confirmation for signing up); automatically handles additional requests associated with the
process and displays notifications about the current state

 login: allows users to log into or out of the application, re-checks token (to ensure its
validity) and displays the current state

 chngpasswd: allows users to change their password

 chngpasswdcnf: maps to a route received by a user in an e-mail (the e-mail requesting
user's confirmation for changing his/her password); automatically handles additional requests
associated with the process and displays notifications about the current state

 149

https://github.com/sahat/satellizer

22.1.10 Directives
While directives were designed to solve many different kinds of issues, there are some
patterns we followed during development. We will demonstrate our approach, when designing
directives, on an example of a confirmation modal window.

A confirmation modal window is a piece of HTML code consisting of several divisional
elements (<div>) with correctly attached pre-defined classes. The classes as well as
functionality is provided by the bootstrap framework. Therefore an example of how a modal
window may look like, may be found here:
http://www.w3schools.com/bootstrap/bootstrap_modal.asp. What remains is a way to open
the modal window and a way to close it from outside the directive. (Note bootstrap already
supports a way to open / close the modal window; however, a concrete element has to be selected
first, which is rather impractical to do inside of a screen's controller.) For that purpose we reserved
a single attribute, "bind", acting as a 'gate' to our directive's interface. An example can be seen
below:

Inside of a template we can use the directive the following way:

<!-- Confirm modal window -->
<confirm bind="myobj" title="Title">
 confirm modal window content, 'yes or no' question
</confirm>

<!-- Button to open the modal window with -->
<button ng-click="open()">Open</button>

Inside of a corresponding controller we may specify the following code:

// Initialization; the object will be filled by the corresponding
functions automatically
scope.myobj = {};

// On button click
scope.open = function() {
 // Open the modal
 scope.myobj.open(function (response) {
 // Upon closing the modal, this will be automatically
called
 if (!response) {
 console.log('A user answered "no".');
 }
 });
};

 150

http://www.w3schools.com/bootstrap/bootstrap_modal.asp

It is worth mentioning that we strived to put visually related interface into separate attributes
(e.g. modal headline is determined by the "title" attribute inside of a template). "bind" attribute
serves mostly as a 'gate' to call a directive's functions. For data or functions to be consumed by
a directive itself we usually created individual attributes, as demonstrated by the following
example:

<button-load button-class="btn" action="f"
disabled="option1.chosen">Execute</button-load>

Where action is a function to be used by the button-load directive and disabled is an
expression to be evaluated by the directive (on certain events). Exceptions from the rule may
happen, however.

22.1.11 File handling
File handling is associated with the following screens:

 addfile: serves for uploading/attaching new files

 filelist: displays all user's files; allows downloading, configuration and removal of the files

 createnewtask: during a task creation/configuration, a new file may be uploaded/attached
and configured

To avoid repeating ourselves, we put a portion of a code serving for uploading/attaching files
into a separate subcomponent, common/fileinput. It has a form of a directive, i.e. it consists
both of an HTML template and a controller handling the logic behind.

File configuration is handled on several places (all of the screens mentioned at this section). We
approached the problem by creating a subcomponent common/filesettings, consisting of a
modal window with corresponding controls. On opening the modal, data associated with the
existing file configuration is loaded from the server and sent upon close.

Last, but not least, filelist screen has a similar implementation to taskconfigs screen
(described in the following section), consisting of a simple table, displaying basic information
about each file, while providing actions to further manipulate the files (configuring,
downloading and removing the files).

22.1.12 Task handling
Task handling is associated with the following screens:

 createnewtask: serves for creating new tasks while also allowing editing existing tasks

 importtask: allows creating new tasks by configuration import

 151

 taskconfigs: displays all user's tasks, shows their basic information and allows for their
basic manipulation

 taskresult: a comprehensive display of a task's result, provided by the server; allows
sending feedback and reexecuting the task

createnewtask consists, among others, of a common/fileinput component, to allow for a
simple file upload / attach right during a task's creation / editing. Several form controls are
available to allow a detailed task configuration.

importtask is a relatively simple screen consisting only of a text field and file input field. The
selected task configuration file is processed via HTML5 file API and its data sent to the server
(upon clicking the corresponding submit buttons).

taskconfig, similarly to filelist screen, is basically a table of tasks, displaying basic
information, such as identifier, last modification date and description, while also providing
several buttons for manipulating the tasks. The list of tasks, when obtained from the server, is
handed to pagination directive. The directive processes the list, providing only a sublist to
surrounding components, based on a currently selected page.

An important aspect of taskconfig is its ability to display each task's current state. Based on
the state, different actions may be taken for each task state (e.g. a running task may not be
removed, while only a finished task has a 'go to result' button available). The states are processed
in the following manner:

 At the beginning, a server returns a list of all tasks, while also providing information about
each task's current state.

 A list of tasks that are running, is created.

 Each of the task's state from the list is requested each 3 seconds via a time-out function. (It
is taken into a consideration that the server may take a longer time to respond, in which case
the interval may be prolonged.)

 A task, which is no longer running, is removed from the list.

 An action, such as re-running a task, may again change a task's state. If a task is this way
put into the running state, it is added to the list of running tasks.

 Upon visiting a different screen, the time-out function is cleared.

22.1.13 Taskresult screen
The taskresult screen provides a comprehensive display of a task's result, which was
previously computed by the server. The screen allows examining the result, provides means to
store and send feedback to the server, and allows for downloading of exported result in
various formats.

 152

JSON data binding

In order to work properly, the application needs the following JSON objects from the server:

 $scope.result - represents an actual result of the algorithm. Additionaly, the object is used
as a binding variable for user changes.

 $scope.feedback - contains saved user changes from a previous iteration of the algorithm.

 $scope.inputFile - a user input file.

 $scope.configuration - contains information about chosen knowledge bases, primary
knowledge base, etc.

Additional important objects include:

 $scope.ignoredColumn - represents ignored columns for feedback.

 $scope.noDisambiguationColumn - represents ignored cells in all columns.

 $scope.noDisambiguationCell - represents ignored cells.

An important utility object is "$scope.locked" with flags for locked/unlocked state of entities.
Basically, every data change causes setting of a corresponding lock to "true" (representing
locked state). It allows for sending only the actually modified data to the server.

In the beginning, all entities are unlocked. After a user makes some data modification and
reruns the algorithm with his/her feedback, the modified entities will be locked. They stay that
way until a user modifies his/her feedback again.

The structure of the object is as follows:

$scope.locked = {
 tableCells: ...,
 subjectColumns: ...,
 graphEdges: ...,
 statisticalData: ...
}

 tableCells - two-dimensional array, first dimension ranging from -1 to number of rows (-1
representing the header row), the second dimension from 0 to number of columns.

 subjectColumns - one for each knowledge base (at most one column can be chosen/locked).

 graphEdges - for relation changes between two columns.

 statisticalData - for changes of data cube.

 153

"$scope.selectedPosition" determines selected position in the table of
classifications/disambiguations, e.g.:

$scope.selectedPosition = {
 column: 3,
 row: -1
}

"$scope.selectedRelation" determines selected relation between two columns in the
graphvis component, e.g.:

$scope.selectedRelation = {
 column1: 2,
 column2: 0
}

The code of taskresult screen, being relatively complex, is divided into several sections:

 classdisambiguation: generates a table showing classifications and disambiguations
suggested by the algorithm. The user can edit this suggested values.

o cdlock: is a directive which shows lock/unlock icons. Also detects user changes.

o cdtable: generates table using cdrow directive. The first row contains headers of
the input file.

 cdrow: represents a single row of the table. Shows a winner classification or
disambiguation and provides means for editing the feedback.

o cdmodalproposal: a modal window allowing a user to create and save his/her own
classification/disambiguation for each cell in the table. A user can add his own
entities (but only to the primary knowledge base).

o cdmodalselection: a modal window showing detailed information about a picked
cell from the table.

 cdselecting: generates cdselectbox and cdsuggestion for all knowledge
bases (see below).

 cdselectbox: represents a select box using a component ui-selectbox,
which is a smart version of select box that allows for displaying HTML
elements inside its options (more on https://angular-ui.github.io/ui-
select/).

 cdsugestion: allows to search for an appropriate classification or
disambiguation via a label.

 154

https://angular-ui.github.io/ui-select/
https://angular-ui.github.io/ui-select/

 cdcheckboxes: provides settings of ignored values

 relations: shows suggested relations using the graphvis component.

o rlock: shows lock/unlock icons and detects user changes in the graphvis
component.

o rmodalselection: is a modal window providing details of a concrete relation.

 rmodalproposal: allows to create and save a custom relation.

 rselectbox: a select box similar to cdselectbox, but for relations .

o rsugestion: allows to search for an appropriate relation via a label.

o graphvis: represents the graph of relations (see "Grapvis" below for further details).

 subjectcolumns: for setting a subject column for all knowledge bases.

 statisticaldata: setting dimensions and measures and its predicates using the table
directive (see below) for data cube.

o table: generates a table for given dimensions or measures. Allows to choose
predicate in a similar manner as relations.

 controlsbuttons: contains control buttons, which allow to browse the result, save
feedback and re-run the algorithm.

 export: buttons for exporting the data in a desired format.

LodLive

Odalic experimentally cooperates with project LodLive (https://github.com/dvcama/LodLive).
The project provides means to browse resources and their related entities.

A copy of the project is lightly adapted to allow for communication with Odalic. An exit button
was added as well as a button for returning a selected resource URL.

The communication between Odalic and LodLive is solved by HTML5 Message API
(Window.postMessage()). For more information, please visit https://developer.mozilla.org/en-
US/docs/Web/API/Window/postMessage.

Graphvis

A graphvis is a component that is a part of a relationship discovery step of the taskresult
screen. Graphvis is basically just an SVG (HTML5) element with several controlling buttons.

At the beginning, a graph is created, based on the data in the task result obtained from the
server. Graph is created by the principles of OOP, i.e. vertices, edges and labels are all objects

 155

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://github.com/dvcama/LodLive

that may be further manipulated. Then, since the graphvis is implemented using D3 library
(https://d3js.org/), tick function is called continuously by the D3 (which represents a smallest step
in the simulation, what graphvis in its principle is - a simulation).

Several actions are mapped to events, such as clicking on an edge label, or dragging a node
with a mouse. The main idea behind the graphvis are states: the only moving parts of the
graph are nodes. These are moving only if attractive / repulsive forces are active and if the
graph is not stabilized. We can turn the forces off, thus putting the graph into a static state.
This serves us for allowing a user to create his/her own links between the nodes. (The states
are changed by clicking on the corresponding buttons.) Additionally, the states are applied also
when a node is fixed due to a user moving it around (which may be further released by double-
clicking on it). This state is preserved even when changin between 'link creation' and 'node
dragging' mode.

22.1.14 Knowledge base configuration handling
Task handling is associated with the following screens:

 kbconfig: serves either for creating new knowledge base configurations or editing the
exsting ones

 kbimport: allows creating new knowledge base configurations by configuration import

 kblist: displays all user's knowledge base configurations, shows their basic information
and allows for their basic manipulation

 setproperties: serves for defining new, or editing existing ones, predicates and classes
groups

kblist is in many ways similar to other 'listing' screens, such as filelist or taskconfig. It
consists of a table, pagination directive (not to overwhelm the user with all of the configurations
on 1 page in case of many configurations defined), and several buttons to allow the manipulation
of the configurations.

kbconfig is a rather more complicated screen consisting of several controls to allow detailed
specification of a knowledge base configuration. tabset (provided by the library uibootstrap)
groups relevant controls under common tabs and allows switching among them. A new
directive, for specifying string arrays by a user, has been added, cilistbox (e.g. for specifying
skipped attributes in the 'search' tab). To allow defining and editing predicates and classes
groups, a new screen had to be added - setproperties. This led to a problem with data
persistence: normally, when switching between screens, user-entered data is lost. To avoid
that, we used persist service to keep the user-entered data while browsing setproperties
screen and reload the data upon entering kbconfig again.

kbimport shares a very similar implementation with importtask screen.

 156

https://d3js.org/

23 UnifiedViews DPU implementation

The plugin was built according to instructions in Creation of Plugins (DPUs).

It uses Jersey client library to access the server REST API. First it uploads the file provided as
the input to the DPU under a unique ID and follows it by formatting it according to the DPU
instance configuration.

The task configuration uploaded to the DPU is used as a template, where the actual file
identifier is injected before the DPU sends the task configuration to the processing server. The
file identifier injection exploits the fact that the configuration is a serialized RDF. It builds RDF
model from it with UnifiedViews internal Sesame library and replaces the subject of the
property that relates the file identifier to the task. Then it serializes the model again and sends
it to the server under unique ID.

The execution is done in a manner similar to the web client: the DPU gives command to start it
and then periodically polls the execution state until it is terminal. In case of success, the DPU
requests export of the outputs and redirects the InputStreams from the response to
FileOutputStreams that are defined for the outputs of the DPU. In case of failure or success
with warnings, DPU extracts error message or messages from the response. Server responses
are parsed by mapping them to objects of classes annotated with JAXB annotations, employing
Jackson library integrated to the Jersey. Only in the case of warnings, it would be impractical to
map the whole, potentially large and complicated result, so a partial mapping via JsonCreator
is defined.

24 Possible extensions and improvements

24.1.1 Algorithm

24.1.1.1 Learning from the user feedback

In general, the algorithm should be able to learn from feedbacks provided by the users:

 When certain classification is marked as being wrong for file X, column C, then we can learn
from that and in the future penalize such classification for documents with same/similar
structure.

 The same for a chosen alternative, which could be prioritized in similar conditions.

 157

https://fasterxml.github.io/jackson-annotations/javadoc/2.6/com/fasterxml/jackson/annotation/JsonCreator.html
http://archive.rdf4j.org/
https://jersey.java.net/documentation/latest/client.html
https://grips.semantic-web.at/pages/viewpage.action?pageId=50929588

 Use the already executed classifications/disambiguations/relations discoveries as a
learning set of cases in supervised learning and try to deduce
classifications/disambiguations/relations discoveries for the other cases based on that.

24.1.1.2 Different kinds of feedback

Apart from the feedback where user essentially overrules the algorithm, allow the user to
provide a negative feedback, marking some resources as undesirable, but let the algorithm to
try alternatives.

24.1.1.3 General performance

 Find a better balance between the context taken into account and the number of queries.

 Reduce the usage of web search API.

 Enable parallel processing of interpreters and cooperative interruption of tasks.

24.1.1.4 Relations discovery

 Try to suggest properties with the domain being equal to the concept classifying the
subject column.

o Also it should try to look into relations being already associated with the entities
classified with the same class, e.g. if the algorithm knew that column is classified as
Country, it should try to map existing properties with the domain Country to the
columns with relation values - in other words it should try to find a column
containing population, area (which define the Country as the domain).

o The same for ranges.

 Integrate relations discovery in a better way - e.g. so that found relations (and their
domain/ranges) influence the classification and may cause selection of a different class and
then different disambiguations.

 For statistical data, the algorithm does not run relation discovery.

o But modified version of relation discovery could be executed - it could search the
range types, and use the fact that every such predicate is qb:dimensionProperty,
qb:measureProperty.

 Taking into account distribution of the values when looking for the property.

o E.g. if there is a column containing values such as "1.8", "2.2", "2.0", it probably is not
weight of a person, but rather his or her height.

 158

 Taking into account recommendations for relations based on the similarity (in terms of the
structure) between processed files.

o For example if file A contains relations X, Y, Z and it is similar (in terms of its
structure) to file B, which contains relations X, Y, it is probable that file B also
contains relation Z and such relation should be suggested.

 Taking into account recommendations for relations based on the fact that certain relations
typically occur next to each other. E.g. When there are properties foaf:firstName and
foaf:age, then there probably is also property foaf:surname.

 The algorithm may also take account that subject column in the CSV file may be also an
object of some triple, not just the subject - so it makes sense to also look for inverse
relations.

 Algorithm selects the best matching relation not just based on the comparison of the cell
value and object of the triple in the knowledge bases, but also by comparing CSV column
title and name/URI of the candidate predicate in the given knowledge base. Nevertheless,
in case of two knowledge bases giving evidence for the given relation, the selected
predicate should not be taken by just comparing the similarity of the property name and
the column title (which may be misleading), but rather by consulting Linked Open Data
cloud and selecting more widely used predicate for these situations.

 Detect common violations of the established vocabularies, such is not respecting domains
and ranges of the properties, when changing the classifications of related columns.

 Relations when the primary key is split into two or more columns (in other words subject
column does not represent the whole "primary key") currently is not supported.

 Enable of processing of sets of tables and detect relations across two or more tables
(foreign keys, M:N tables).

 Explore algorithm behaviour in certain corner cases:

o What if two columns are classified by the same class? How to introduce handling of
self-relations, e.g. some person is another person's boss?

 Use the vocabularies to infer other relations.

24.1.1.5 Classification/Disambiguation

 There are still some issues with the user feedback to the classification/disambiguation
results of the algorithm:

o Cells with the same literal value share the same disambiguation, which is the first
one resolved.

 159

http://lod-cloud.net/
http://lod-cloud.net/

 Performance issues with respect to classification/disambiguation,

o Too many queries to the knowledge bases during disambiguation caused by
ineffective restriction of the searched entities in the knowledge bases. For example,
the algorithm for disambiguation typically takes into account the context of the
disambiguated cell, such as the row and column in the table the cell is part of.
Nevertheless, there is no differentiation among the meaning of the other columns'
cells forming the context. For example, if I would disambiguate name of the school,
the information about 'locality' (state, country) is really important to reduce the
number of entities probed in the knowledge bases and it would also increase
precision.

 Too many false positives in case of lower evidence for the disambiguated cells/classified
columns or CSV files providing low context for the classified columns/disambiguated cells.

 Take into account the distribution of values.

 When there is not enough evidence, do not produce the almost arbitrary classification or
disambiguation, but rather produce no result.

 If you have a file which contains name and abbreviation, then the algorithm tries to
associate the same class with the name and abbreviation at the same time. But in this case
one of the columns should be chosen as the preferred one, and the other one to become a
property of the first one.

24.1.1.6 Knowledge Bases

 Proper use of hierarchy of concepts.

 Improve the behaviour to always select the most specific concepts

 Support for GeoNames base and Wikidata.

 Do a rigorous evaluation:

o Evaluate precision/recall/performance gain.

o Evaluate how the precision/recall changed after proper use of hierarchies, other
tweaks to KBProxy.

o Evaluate how the performance improved after adjustments.

 Alternative labels are not searched when searching the bases.

 Provide more then one winning concept for disambiguation.

 160

o Currently there is just one winning concept for disambiguation when e.g. DBpedia is
used. It is not a desired behaviour, but it is so because of the way the queries for
candidates are made.

 We use exact string match first, and if no matching resource is found, we use
regular expression. So in most cases, there will be one exact match.

 Before with the now deprecated Freebase, the search API was more similar
to a free text engine, hence we got many candidates. But DBpedia is a
SPARQL database and therefore has the text matching comparatively limited.

 Ideally, we should first build an inverted index of labels of all URIs in
DBpedia, and use that instead of doing string matching on labels using
SPARQL or we we could use an existing full-text index when available.

 Take into account the hierarchy of KB.

o Follow the "subclassOf" relations and automatically assume that more generic
classes are also candidates.

 Unfortunately this relations have to materialized first.

 Currently the multiple KBs are handled as separate runs of the algorithm. It could be
interesting to run the algorithm only once and handle multiple KBs in the KBProxy (return
results from all of the configured KBs and merge results with the same URL).

o At least allow parallel execution, but with respect to the shared resources (hard-
drive and network access).

24.1.2 UI Improvements
 Introduce graph visualisation for data cube export.

 Prevent the roll-on effect in some less used browsers when the screens change.

 Add user administration module to the UI.

 Improve token generation and management:

o Allow the user to overview the issued tokens.

 Use OAuth and external services to log the users in.

 Adapt LodView or other means to view the details of resources.

 161

https://github.com/dvcama/LodView
https://oauth.net/

25 Project history

 March 2016

o preliminary meetings

o introduction of the team members to the problem and needed tools

o discussion about the project scope

o mailing list established

o roles assigned

o consultations with Ziqi Zhang

o preliminary requirements gathering and architecture discussions

 April 2016 - May 2016

o drafting of project proposal

o collecting and analysing project requirements

 possible scenarios

o internal presentations:

 existing knowledge bases

 AngularJS

 RDF tools and libraries

 REST API

o internal glossary established

o practising of Git usage

o time-schedule discussions

o trying out the project wiki

o further consultations with Ziqi Zhang

o project management tools chosen

 162

 late May 2016

o overall architecture drafting

o developing usage scenarios and their mock-ups

o project proposal finalized

o preparations for the 1st iteration

 time estimations

 tasks assignment

 project guidelines

 setting-up the environments

 1st iteration (June 2016 - July 2016)

o re-balancing of responsibilities among the team members

o basic code structure for the UI and server with REST API created

o works on substitution of deprecated Freebase with DBPedia KB

o drafting the approach to data cubes handling

o prototype allowing to upload a file, launch the TableMiner+ algorithm through a
web client and display the results, using the REST API created

o 2nd iteration planning

 establishing of user stories too simplify testing and verification of satisfied
requirements

 2nd iteration (July 2016 - August 2016)

o relations support added, including visualisation

o adjustments to file upload dialog

o discussion about the possibility to browse the repositories

 LodLive, LodView analyzed

o draft of export according to the "CSV on the web"

o support for multiple KBs added

o feedback to classification and disambiguations added to the UI, but not taken into
account yet by the server

o re-factoring of API to better accommodate feedback process

 3rd iteration (September 2016 - November 2016)

 163

o extensive bug-fixing of the features introduced in the previous iteration

o feedback integration to the algorithm

o removal of certain annotations as part of the feedback discussed

o 4th iteration planning

 custom concepts provision by the user

 task configuration export and import

 tasks management

 UnifiedViews integration

 remote files access

 statistical data draft finalized

 API error handling

 4th iteration (November 2016 - December 2016)

o UI re-factoring

o testing on data from the Austrian catalogues

o feedback to relations added

o improving the resource search and introducing custom resource proposal

 5th iteration (January 2017)

o paging of listings

o URI prefix mapping support added

o configuration import and export solved

o multiple users support and authentication/authorization

o server state persistence

o statistical data export implemented

 6th iteration (February 2017)

o bugfixing

o UnifiedViews plugin created

o KB proxy performance tweaking

o documentation finalization

o minor UI tweaks

 164

 7th iteration (April 2017 - May 2017)

o feedback from the project defence incorporated

o runtime knowledge base proxies configuration implemented

o datatype relations omission bug resolved

o multiple subject columns support added

o UI tweaks

o Docker installation option provided

o proxy definitions exports and imports implemented

o logging fixed

o minor bugfixes

 165

26 INSTALLATION DISC
CONTENTS

 ODALIC

o Odalic Semantic Table Interpreations

 Deployable (contains the WAR deployable to Apache Tomcat)

 Javadoc (site directory and JAR with generated Javadoc)

 Sources (zipped release source files)

 Working directory (server working directory template)

o Odalic UnifiedViews Plugin

 Deployable (contains the plugin bundle and a lib directory with OSGi
dependencies)

 Sources (zipped release source files)

o Odalic User Interface

 Deployable (contains odalic-ui and modified LodLive directories to deploy to
server)

 Sources (zipped release source files)

o Project documentation

 166

27 LOGOS

Variant A

Variant B

Variant C

Variant D

 167

Variant E

Variant F

 168

